Accepted Manuscript

Magnetocaloric effect of the LaFe11.2Co0.7Si1.1 modified by partial substitution of La by Pr or Ho

Piotr Gebara, Jozef Kovac

PII: S0264-1275(17)30519-1

DOI: doi: 10.1016/j.matdes.2017.05.038

Reference: JMADE 3062

To appear in: Materials & Design

Received date: 1 March 2017 Revised date: 29 April 2017 Accepted date: 11 May 2017

Please cite this article as: Piotr Gębara, Jozef Kovac, Magnetocaloric effect of the LaFe11.2Co0.7Si1.1 modified by partial substitution of La by Pr or Ho, *Materials & Design* (2017), doi: 10.1016/j.matdes.2017.05.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Magnetocaloric effect of the $LaFe_{11.2}Co_{0.7}Si_{1.1}$ modified by partial substitution of La by Pr or Ho

Piotr Gebara^{1*}, Jozef Kovac²

¹Institute of Physics, Częstochowa University of Technology, Armii Krajowej 19 Av., 42-200 Częstochowa, Poland

²Institute of Experimental Physics, Slovak Academy of Sciences, Watsonowa 47, 040 01 Kosice, Slovakia

*Corresponding author: pgebara@wip.pcz.pl

Abstract:

The aim of present paper was to study the structure and magnetocaloric effect in $La_{0.9}X_{0.1}Fe_{11.2}Co_{0.7}Si_{1.1}$ (where X=Pr, Ho) alloys. The XRD investigation revealed a coexistence between the expected $La(Fe,Si)_{13}$ - type phase and minor fraction of α -Fe(Co,Si) in both samples. Moreover, a significant decrease in the lattice parameter of the $La(Fe,Si)_{13}$ phase for sample doped by Ho, compared to specimen modified by Pr, was detected. The values of the Curie temperature reach 259 and 263K for the Pr and Ho doped sample, respectively. The calculated values of magnetic entropy change equaled 15.73 and 10.91 J/(kg K) under the change of external magnetic field $\mu_0\Delta H=5T$ for the $La_{0.9}Pr_{0.1}Fe_{11.2}Co_{0.7}Si_{1.1}$ and $La_{0.9}Ho_{0.1}Fe_{11.2}Co_{0.7}Si_{1.1}$ alloys, respectively. Based on the field dependence of magnetic entropy change ($\Delta S_M=C \cdot (B_{max})^n$), the exponent n has been calculated and at the Curie point its values equaled 0.64 and 0.65 determined for $La_{0.9}Pr_{0.1}Fe_{11.2}Co_{0.7}Si_{1.1}$ and $La_{0.9}Ho_{0.1}Fe_{11.2}Co_{0.7}Si_{1.1}$ alloys, respectively. These values correspond well with theoretical predictions.

Keywords: XRD, magnetocaloric effect, La(Fe,Si)₁₃ alloys

1. Introduction.

The relatively low efficiency of the gas vapor/compression process causes enormous consumption of energy in domestic refrigerators. A more promising cooling method is magnetic refrigeration based on the magnetocaloric effect. The magnetocaloric effect (MCE) is an intrinsic property in magnetic materials that results in a change in temperature of the

Download English Version:

https://daneshyari.com/en/article/5023618

Download Persian Version:

https://daneshyari.com/article/5023618

<u>Daneshyari.com</u>