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H I G H L I G H T S

• A combined experimental and model-
ling approach to elucidate key molecu-
lar properties of corrosion inhibiting
molecules.

• Electrochemical properties are correlat-
ed with molecular features using a neu-
ral network model for inhibitor design.

• Robust predictions of electrochemical
properties are achieved via an automat-
ically trained network from measure-
ments.

• Impact of molecular features on the ef-
fectiveness of corrosion inhibitor on an
aluminium alloy is assessed and ranked.
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The increasing demand for environmentally-friendly and non-toxic coating systems from the aerospace and
heavy industry sectors is driving innovation in corrosion inhibitor design and functional coating development.
A fundamental understanding of how molecular structure and functionality influences the electrochemical re-
sponses of inhibited coatings is crucial for the design of effective functional coatings to replace stalwart, yet highly
toxic industrial solutions. In this paper, an artificial neural network approach is presented to quantitatively study
the relationship between the structural/molecular features of inhibitor compounds and their experimentally
measured electrochemical properties. The presented method is applied to correlate molecular features of corro-
sion inhibitorswith experimentally obtained corrosion potential (Ecorr), corrosion current (Icorr) and anodic/ca-
thodic Tafel slopes. The neural network model, trained through an automatic optimization process, was able to
predict the electrochemical performance for a given inhibitor molecule candidate. We will demonstrate how it
can be utilised to assess the impact of molecular structure on the final effectiveness of the candidate corrosion
inhibitor molecule. The presented neural network learning method could be applied to other areas in materials
science for accelerating general materials discovery and functional coating design.
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1. Introduction

Quantitative studies of structure-property relationship (QSPR) have
been carried out in awide range of applications fromchemical andbiolog-
ical science and engineering [1–5], to the design and development of
novel materials [6–8]. In corrosion science, electrochemical responses of
inhibitedmetalsmay be correlated to themolecular structure of corrosion
inhibitors included in the paint system [9–11].Modelling this relationship
is of particular importance in enabling and augmenting next-generation
environmentally-friendly and sustainable inhibitors for corrosion protec-
tion of manufactured products, vehicle platforms and civil infrastructure.

Regression analysis is a common approach for estimating relation-
ships among variables and has been extensively studied in literature,
from the simplest form of linear regression to more sophisticated ma-
chine learning techniques [12]. As one particular type of machine learn-
ing algorithm, the artificial neural network (ANN) approach is inspired
by the structure and functional aspects of biological neural networks,
and is used to perform tasks such as nonlinear approximation, predic-
tion, game/control theory, pattern recognition and classification, etc.,
by employing varying combinations of supervised learning, unsuper-
vised learning and reinforcement learning [13–16]. In recent years, re-
gression analysis based on neural networks has been extensively used
in QSPR and quantitative structure-activity relationship (QSAR) studies
formodelling physico-chemical properties or biological activitywith re-
spect to chemical structures [17–23]. The fundamental basis of the neu-
ral network model is to build up learning rules by training an artificial
network from a given set of molecular features and then to predict the
associated properties by interpreting the output of the trained network.
Bayesian regularization in the network training has been shown to
overcome problems of overfitting and overtraining in back-propagation
neural networks and increase the robustness of the network perfor-
mance [24–26].

In this work, we focus on modelling and correlating the electro-
chemical properties of inhibited metals, including corrosion potential,
corrosion current and anodic/cathodic Tafel slopes, with structural de-
scriptors of inhibitormolecules using the Bayesian regularization neural
network approach. The proposedmethod is based on a three-layer neu-
ral network architecturewith an automatic trainingprocess tominimise
the correlation error. This optimization process effectively selects the
most representative molecule subsets from the entire sample space.
The remaining un-trained datasets can be used to validate the model
prediction performance. The prediction capability is of great interest,
and enables the effective and efficient design of new corrosion inhibi-
tors. Given a large starting set of inhibitor molecule candidates with
known structure characteristics, a robust prediction of the electrochem-
ical response of a given inhibitor molecule can help select better candi-
dates for experimental validation, rather than testing all possible
molecules of a given chemistry. Such an approach will greatly reduce
the time and effort required to identify a suitable candidate, accelerating
the development section of the R&D cycle. In the experimental section,
we will demonstrate that training optimization is an important process
for building a robust network prediction model.

Additionally, the proposed neural network model is able to assess
the importance of an individual structural descriptor to the resulting
electrochemical properties, providing invaluable insights to guide mo-
lecular design of next-generation inhibitors. The assessment is based
on a fraction of thenetwork connectingweights on a particular structur-
al descriptor over the total weights of the whole network. The higher
the fraction on amolecular feature, the higher the impact of this feature
to the modelled property.

Details of the artificial neural network model are presented in the
next section, with an emphasis on Bayesian regularization training
and optimization. In Section 3, the network model is used to correlate
the corrosion potential (Ecorr), corrosion current (Icorr), anodic Tafel
slope, and cathodic Tafel slope separately using a set of molecular de-
scriptors. A number of important molecular features are identified and

the simplified network performances are compared with the original
model. The training optimization is demonstrated using 80% of input
data for training and 20% for validation. The prediction accuracy on
the validation set is presented for model justification.

2. Method

2.1. Neural network architecture

Thebasic architecture of an artificial neural network consists of at least
three layers: an input layer, an output layer and one or more hidden
layers. Neurons in the input layer represent measuredmolecular descrip-
tors, while neurons in the output layer predict the engineering properties
that relate to molecular characteristics. Input neurons are distributed to
subsequent hidden layers and finally to the output layer via weighted
connections. Each node in the network operates by taking the sum of its
weighted inputs and then passes the result through a nonlinear activation
function.

Consider a simple one hidden layer network illustrated in Fig. 1, let f
be a non-linear activation function. X, A and θ be input neurons, the lin-
ear operator and the bias term on X. Similarly, let H, B and ϕ denote the
hidden neurons, the linear operator and thebias termonH, respectively.
Then the output layer neurons Y can be derived as

H ¼ f A � X þ θð Þ ð1Þ

Y ¼ f B � H þ∅ð Þ ð2Þ

The most frequently used non-linear activation function is a sigmoid
function,which ismodified fromabinary step function and is in a formof:

f uð Þ ¼ 1
1þ e−u=τ

ð3Þ

where τ is a tuneable number and referred as the temperature of the neu-
ron. The higher the temperature themore gently the sigmoid changes. At
very low temperature it approaches a step function. The sigmoid function
introduces non-linearity in the network and is computationally attractive
in its derivative calculation: f′(u)= f(u)*(1− f(u))/τ.

In general, a neural network can be reviewed as a nonlinear multi-
variable function of input vector X and weight vector w: Y~(X,w). The
weight vector is composed of weights in each layer for each neuron, in-
cluding bias terms. The neural network error function, associated with
given output Y⁎, is defined as:

Ed ¼ 1
2

Y−Y�ð Þ2 ð4Þ

SubstitutingH and Y by Eqs. (1) and (2), Ed is amultivariable function of
X and w.

The neural network approach contains two phases: a training phase
and a classification phase. The training phase aims to determine the best
network weights by minimising the network error Ed. Once a network
has been trained based on the experimental observation Y⁎, the classifi-
cation phasewill predict the network output Y for any given inputX and
trained weightw. With regarding to the computation strategy of multi-
ple layer neural network, the classification phase is relatively simple
and referred to as forward propagation, which is to feed input data in
hidden layer to determine hidden neurons by Eq. (1) and then forward
propagate to the output layer to calculate output neurons by Eq. (2).

The training process, on the other hand, is more complicated and
performed by back propagation [27]. Back propagation is one of the
most popular network training algorithms, using gradient descent or
steepest descent method. It minimises the network total error by
adjusting the weights in a way that the negative gradient of the error
function with respect to the weights, pointing in the direction that
will most quickly reduce the error.
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