Accepted Manuscript

Vickers microhardness and microstructure relationship of Ti-6Al-4V alloy under cyclic forward-reverse torsion and monotonic torsion loading

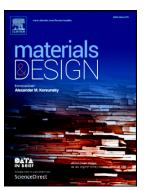
Xinkai Ma, Fuguo Li, Jun Cao, Jinghui Li, Han Chen, Chen Zhao

PII: S0264-1275(16)31416-2

DOI: doi: 10.1016/j.matdes.2016.11.028

Reference: **JMADE 2464**

To appear in: Materials & Design


Received date: 13 August 2016 Revised date: 4 November 2016 7 November 2016 Accepted date:

doi: 10.1016/j.matdes.2016.11.028

Please cite this article as: Xinkai Ma, Fuguo Li, Jun Cao, Jinghui Li, Han Chen, Chen Zhao , Vickers microhardness and microstructure relationship of Ti-6Al-4V alloy under cyclic forward-reverse torsion and monotonic torsion loading. The address for the corresponding

author was captured as affiliation for all authors. Please check if appropriate. Jmade(2016),

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Vickers microhardness and microstructure relationship of Ti-6Al-4V alloy

under cyclic forward-reverse torsion and monotonic torsion loading

Xinkai Ma, Fuguo Li*, Jun Cao, Jinghui Li, Han Chen, Chen Zhao

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering,

Northwestern Polytechnical University, Xi'an 710072, China

*Corresponding Author: Fuguo Li

Tel.: +86 29 88474117; fax: +86 29 88492642; Email: fuguolx@nwpu.edu.cn

Abstract: The effect of strain reversal on the hardening and grain refinement of Ti-6Al-4V alloy

due to cyclic forward-reverse torsion (CFRT) has been investigated in this study by twisting the

bars with different strain reversal amplitude. The results showed that microhardness and its

distribution were very sensitive to CFRT and increased distinctly after pre-CFRT pure shear

deformation. It was observed that the ultimate microhardness and homogeneity were superior for

CFRT as compared to monotonic torsion (MT), while the hardenability exponent of MT is higher

than CFRT. Besides microhardness in the center layer and surface layer of a bar exhibited different

evolutionary process with the increasing amplitude of strain reversal. Grain refinement induced by

latticed dislocation tangle and work hardening enhanced by strain gradient were also discussed to

reveal the evolution of microstructure and microhardness.

Keywords: Ti-6Al-4V alloy; cyclic forward-reverse torsion; strain reversal hardening; latticed

dislocation zones

1. Introduction

Titanium and its alloys, especially Ti-6Al-4V alloy, have been widely used in industrial

applications such as aerospace, automotive, marine and biomedical because of low density, high

strength and excellent toughness[1]. As grain refining is a very effective way to improve the

mechanical properties of materials, more and more attention has been attracted on the severe

plastic deformation (SPD) techniques due to their ability to refine the grains in polycrystalline

materials down to sub-micrometer or the nanometer level[2-4]. Grain refinement is dependent on

not only alloy compositions but also the strain paths applied during SPD processing and different

SPD methods impart different strain paths [5]. Popular SPD methods include equal channel

1

Download English Version:

https://daneshyari.com/en/article/5023968

Download Persian Version:

https://daneshyari.com/article/5023968

Daneshyari.com