Accepted Manuscript

Effect of water depth on weld quality and welding process in underwater fiber laser welding

Ning Guo, Xiao Xing, Hongyun Zhao, Caiwang Tan, Jicai Feng, Zongquan Deng

PII: S0264-1275(16)31431-9

DOI: doi: 10.1016/j.matdes.2016.11.044

Reference: JMADE 2480

To appear in: Materials & Design

Received date: 12 August 2016 Revised date: 29 October 2016 Accepted date: 10 November 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCR

Effect of water depth on weld quality and welding process in underwater fiber laser welding

Ning Guo 1,2,*, Xiao Xing², Hongyun Zhao², Caiwang Tan 1,2, Jicai Feng 1,2, Zongquan Deng³

¹State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology,

Harbin 150000, China;

² Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of

Technology at Weihai, Weihai 264200, China

³ School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

* Corresponding author, Ning Guo, Tel: +86-631-5677156, Fax: +86-631-5677156

Address: No.2 Wenhuaxi Road, Weihai 264209, China

E-mail: gn21c@126.com

Abstract: A series of experiments under various water depths were performed using an optical

fiber laser without draining the welding zone to study the effect of water depth on the laser

welding. The ULBW processes were also monitored using a camera. Firstly, welding experiments

were performed with laser power 3.0 kW, welding speed 0.6 m/min, focal position 0 mm. It was

found that water has a slight effect on the ULBW, particularly when the water depth is less than 3

mm; however, when the water depth is greater than 7 mm, water has a strong hindering effect on

ULBW and leads it to failure. In the process of direct ULBW, the 'beam channel' is formed in the

water environment between the incident laser beam and the target surface as a result of the gas

pressure inside the plasma exceed the water pressure depending on the water depth. The stability

of the 'beam channel', which gradually worsens with increasing water depth, have an important

influence on the weld bead quality and the welding process stability. Additionally, laser power has

the greatest effect on the available water depth, followed by the welding speed, while focal

position has little effect on it.

Keywords: Underwater laser beam welding; Welding process; Weld quality; Optical fiber laser

1. Introduction

Underwater welding is an important repairing and maintenance technology that is widely used

in offshore oil and gas industries, ships and nuclear power plants. As reported by Bucurel and

Hlifka, underwater welding primarily uses manual arc welding and flux-cored wire welding

processes [1]. Underwater welding has developed rapidly in recent years. In our previous study,

1

Download English Version:

https://daneshyari.com/en/article/5024026

Download Persian Version:

https://daneshyari.com/article/5024026

<u>Daneshyari.com</u>