Accepted Manuscript

Deposition of nanodiopside coatings on metallic biomaterials to stimulate apatite-forming ability

Erfan Salahinejad, Reza Vahedifard

PII: S0264-1275(17)30295-2

DOI: doi: 10.1016/j.matdes.2017.03.047

Reference: JMADE 2881

To appear in: Materials & Design

Received date: 9 January 2017 Revised date: 14 March 2017 Accepted date: 15 March 2017

Please cite this article as: Erfan Salahinejad, Reza Vahedifard, Deposition of nanodiopside coatings on metallic biomaterials to stimulate apatite-forming ability. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jmade(2017), doi: 10.1016/j.matdes.2017.03.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Deposition of nanodiopside coatings on metallic biomaterials to stimulate

apatite-forming ability

Erfan Salahinejad*, Reza Vahedifard

Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran

Abstract

One of the drawbacks of metals and alloys in biomedical applications is their inefficient

fixation to adjacent tissues which can be fairly addressed by applying bioactive ceramic

coatings. In this work, colloidal suspensions based on coprecipitation-derived nanoparticulate

diopside (CaMgSi₂O₆) were deposited on stainless steel 316L by dip-coating and subsequent

low-temperature sintering. Afterwards, the structure, bioactivity and biodegradation of the

samples were in vitro evaluated by spectroscopic and microscopic techniques. The apatite-

forming ability of the surface was found to be improved by using the nanodiopside coating,

while controlled by a typical ion-exchange reaction mechanism originating from the film's

degradability. In this regard, after soaking the coated samples in a simulated body fluid, an

integrated leaf-like precipitation of apatite at early stages and a following non-uniform rose-

like growth of apatite with an increased level of the carbonate substitution for hydroxyl were

detected. It is eventually concluded that nanodiopside coatings deserve further consideration

and development in the biomedical field, where a bioactive fixation is needed along the

implant/tissue interface.

Keywords: Diopside; Coating; Bioactivity; Biodegradation

* Corresponding Author:

Email Addresses: <salahinejad@kntu.ac.ir>, <erfan.salahinejad@gmail.com>

Tel.: + 989173879390

1

Download English Version:

https://daneshyari.com/en/article/5024080

Download Persian Version:

https://daneshyari.com/article/5024080

<u>Daneshyari.com</u>