Accepted Manuscript

A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating

Hao Liu, Li-li Zhu, Yin He, Bo-wen Cheng

PII: S0264-1275(16)31318-1

DOI: doi:10.1016/j.matdes.2016.10.027

Reference: JMADE 2384

To appear in:

Received date: 31 July 2016
Revised date: 9 October 2016
Accepted date: 12 October 2016

Please cite this article as: Hao Liu, Li-li Zhu, Yin He, Bo-wen Cheng, A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating, (2016), doi:10.1016/j.matdes.2016.10.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating

Hao Liu*1,2,3, Li-li Zhu¹, Yin He⁴, Bo-wen Cheng*1

(1.School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China; 2.Institute of smart wearable electronic textiles, Tianjin Polytechnic University, Tianjin 300387, China; 3.Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387, China; 4.School of Fashion of Art, Tianjin Polytechnic University, Tianjin 300387, China.)

*The corresponding authors.

Email address: liuhao@tjpu.edu.cn (H. Liu), bowenc15@163.com (B.W. Cheng)

Abstract

A novel and environment-friendly method was presented for fabricating silver plating polyurethane filaments (SPPFs) with high conductivity and excellent elasticity. An adherent polydopamine film was coated on the surface of polyurethane filaments (PFs) by in-situ polymerization reaction of dopamine. Subsequently, the some silver particles and silver plating were reduced on the surface of PFs by in-situ reduction of polydopamine and glucose in turn. The silver particles could be combined on the surface of filaments by the catechol groups of polydopamine. Experimental results show the electrical resistivity of SPPFs can reach the minimum value of $4.5 \pm 0.1 \,\Omega/\text{cm}$, when the concentration of silver nitrate and dopamine are, respectively, 55 g/L and 3 g/L. The loss of the breaking strength and breaking elongation are, respectively, 5 % and 11.9 %. The nonlinearity error and the hysteresis of SPPF strain sensor are, respectively, less than 29.3 % and 34.3 %. The stretchable flexible SPPFs with high conductivity and excellent elasticity have wide application prospect in many fields, such as wearable electronics, antibacterial, smart textiles, smart garments, and so forth.

Keywords: Polyurethane filament, In-situ reduction, Electroless silver plating, Strain sensor

Download English Version:

https://daneshyari.com/en/article/5024122

Download Persian Version:

https://daneshyari.com/article/5024122

Daneshyari.com