A note on convergence of the solutions of Benjamin-Bona-Mahony type equations

Giuseppe Maria Coclite ${ }^{\mathrm{a}, *}$, Lorenzo di Ruvo ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, via E. Orabona 4, 70125
Bari, Italy
${ }^{\mathrm{b}}$ Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari, Italy

A R T I C L E I N F O

Article history:

Received 23 February 2017
Received in revised form 21 July 2017
Accepted 24 July 2017

Keywords:

Singular limit
Compensated compactness
Benjamin-Bona-Mahony equation
Modified Benjamin-Bona-Mahony equation
Entropy condition

Abstract

We consider the Benjamin-Bona-Mahony and the modified Benjamin-BonaMahony equations, which contains nonlinear dispersive effects. We prove that as the diffusion and dispersion parameters tend to zero, the solutions of these dispersive equations converge to the entropy ones of a scalar conservation law. The argument relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L^{p} setting.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The following evolution equation

$$
\begin{equation*}
\partial_{t} u+\partial_{x} u^{n}-\partial_{t x x}^{3} u=0, \quad n \in \mathbb{N}, \quad n \geq 2 \tag{1.1}
\end{equation*}
$$

is known as the regularized long-wave equation [1-3]. It was proposed as a model for small-amplitude long wave of water in a channel [4-6]. If $n=2$, we recover the Benjamin-Bona-Mahony equation

$$
\begin{equation*}
\partial_{t} u+\partial_{x} u^{2}-\partial_{t x x}^{3} u=0, \tag{1.2}
\end{equation*}
$$

and, when $n=3$ the modified Benjamin-Bona-Mahony one

$$
\begin{equation*}
\partial_{t} u+\partial_{x} u^{3}-\partial_{t x x}^{3} u=0 \tag{1.3}
\end{equation*}
$$

[^0](1.1) and its different variational forms were well studied both theoretically $[7,8]$ and numerically $[9,10]$ in the literature.

We are interested to the diffusion-dispersion limit for (1.2). Therefore, as in [11,12], we first rescale (1.2) as follows

$$
\partial_{t} u+\partial_{x} u^{2}-\beta \partial_{t x x}^{3} u=0
$$

and consider

$$
\begin{equation*}
\partial_{t} u+\partial_{x} u^{2}-\beta \partial_{t x x}^{3} u=\varepsilon \partial_{x x}^{2} u \tag{1.4}
\end{equation*}
$$

As ε and β vanish we pass from (1.4) to the Burgers equation

$$
\begin{equation*}
\partial_{t} u+\partial_{x} u^{2}=0 \tag{1.5}
\end{equation*}
$$

A first result in this direction can be found in [13], where the author used the following conserved quantity

$$
\begin{equation*}
t \rightarrow \int_{\mathbb{R}}\left(u^{2}(t, x)+\beta\left(\partial_{x} u(t, x)\right)^{2}\right) d x \tag{1.6}
\end{equation*}
$$

and the assumption

$$
\begin{equation*}
u_{0} \in L^{2}(\mathbb{R}) \cap L^{4}(\mathbb{R}), \quad \beta=\mathcal{O}\left(\varepsilon^{4}\right) \tag{1.7}
\end{equation*}
$$

to show the convergence of the solutions of (1.4) to the distributional ones of (1.5).
The second key result on this topic can be found in [14], where the authors assume

$$
\begin{equation*}
u_{0} \in L^{2}(\mathbb{R}) \cap L^{4}(\mathbb{R}), \quad \beta=o\left(\varepsilon^{4}\right) \tag{1.8}
\end{equation*}
$$

and prove the convergence of solutions of (1.4) to the entropy ones of (1.5).
Generalizations of (1.4) can be found in [15-18]. In particular, in [15,18], the following equations

$$
\begin{align*}
& \partial_{t} u+\partial_{x} f(u)=\gamma \partial_{x} B\left(\partial_{x} u\right)+\beta \partial_{t x x}^{3} u-\alpha \partial_{x x x x}^{4} u, \tag{1.9}\\
& \partial_{t} u+\partial_{x} f(u)=\beta \partial_{t x x}^{3} u+\sum_{n=1}^{N}(-1)^{n+1} \partial_{x}^{2 n} u \tag{1.10}
\end{align*}
$$

are studied, respectively.
About (1.9), if

$$
\begin{equation*}
\gamma B\left(\partial_{x} u\right)=\varepsilon \partial_{x} u \tag{1.11}
\end{equation*}
$$

(1.9) reads

$$
\begin{equation*}
\partial_{t} u+\partial_{x} f(u)=\varepsilon \partial_{x x}^{2} u+\beta \partial_{t x x}^{3} u-\alpha \partial_{x x x x}^{4} u \tag{1.12}
\end{equation*}
$$

Under the assumption

$$
\begin{equation*}
\left|f^{\prime}(u)\right| \leq|C|\left(1+|u|^{p}\right), \quad 0 \leq p<2, \tag{1.13}
\end{equation*}
$$

assuming

$$
\begin{equation*}
u_{0} \in L^{2}(\mathbb{R}) \cap L^{2(p+1)}(\mathbb{R}), \quad \beta=\mathcal{O}\left(\varepsilon^{\frac{4+2 p}{2-p}}\right), \quad \alpha=\mathcal{O}\left(\varepsilon^{\frac{6+p}{2-p}}\right) \tag{1.14}
\end{equation*}
$$

https://daneshyari.com/en/article/5024348

Download Persian Version:
https://daneshyari.com/article/5024348

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: giuseppemaria.coclite@poliba.it (G.M. Coclite), lorenzo.diruvo77@gmail.it (L. di Ruvo). URL: http://www.dm.uniba.it/Members/coclitegm/ (G.M. Coclite).

