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a b s t r a c t

We consider the inverse problem for estimating the size of an inclusion D, D ⊂ Ω ,
in an elastic body with residual stress. The constitutive equation of this elasticity
system is not isotropic, due to the presence of residual stresses. We prove that the
size of the inclusion can be estimated both from above and below by using only one
pair of traction–displacement measurement on the boundary of Ω .

© 2017 Published by Elsevier Ltd.

1. Introduction

In this research, the focus is on an inverse problem for the elasticity with residual stresses. The main
purpose is to estimate the size of an unknown embedded domain in an elastic body. This embedded domain
could represent the region in which the defect occurs. In order to better define the problem, we consider an
elastic body with residual stresses. The residual stresses are the remainder after the original cause of the
stresses, e.g. thermal treatment, has been removed. The existence of residual stresses may cause premature
failure of a structure.

To define our problem more precisely, let Ω be a connected open set in R3 with smooth boundary ∂Ω .
Assuming that u(x) = (ui(x))3

i=1 is a three-dimensional vector field. We consider the following equilibrium
equation for u:

∇ · σ = 0 in Ω , (1.1)

where σ = (σij)3
i,j=1 is the stress tensor field given by

σ(x) = T (x) + (∇u)T (x) + λ(x)(tr∇̂u)I + 2µ(x)∇̂u, (1.2)
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where ∇̂u(x) = (∇u + ∇ut)/2 is the infinitesimal strain and λ, µ are Lamé parameters. The tensor
T (x) = (tjl(x))3

j,l=1 represents the residual stress, which satisfies ∇ · T = 0 and tjl = tlj for all 1 ≤ j, l ≤ 3.
The expression (1.2) is a simple constitutive equation modelling the linear elasticity with residual stress,

which has been considered in existing literature [1–3] and [4]. The general equation for linear elasticity with
residual stress is given by

σ = T + (∇u)T + L(∇̂u),

where L(∇̂u) is the incremental elasticity tensor. The explicit form of L(∇̂u) can be found in [5] and [6].
We consider (1.2) because for (1.1) with (1.2) we have the three spheres inequalities, which are an essential
tool in this research.

We can express (1.1) with another format. If we define the elasticity tensor C = (Cijkl)3
i,j,k,l=1 by

Cijkl = λδijδkl + µ(δikδjl + δjkδil) + tjlδik, (1.3)

then (1.1) is equivalent to

∇ · (C∇u) = ∂xj
(Cijkl∂xl

uk) = 0 in Ω . (1.4)

It is rather important to notice that, for this elasticity system, the minor symmetry properties,
i.e., Cijkl = Cjikl and Cijkl = Cijlk, may not hold. However, it still satisfies the major symmetry property,
Cijkl = Cklij , meaning that (1.1) is a hyperelasticity system.

Now let D ⊂ Ω represent an unknown domain embedded in Ω . Let C̃ denote the elasticity tensor in D.
We consider the equilibrium system

∇ · ((χΩ\DC + χDC̃)∇u) = 0 in Ω , (1.5)

where χE denotes the characteristic function of domain E. Let u be the solution for (1.5) satisfying the
Neumann condition

(C∇u)ν = φ on ∂Ω , (1.6)

where ν is the unit exterior normal to ∂Ω . Here we investigate the following inverse problem: assuming that
the background media C is known, we would like to estimate the size of D using the knowledge of {φ, u|∂Ω}
only.

The ultimate goal for this inverse problem is to retrieve all geometric information of D by one pair of
{φ, u|∂Ω} only. Detecting size of an inclusion has been studied using various models but yields similar results.
We give three significant examples: modelling electrically conducting body [7], modelling the Lamé system
of elasticity [8] and modelling the elastic plates [9].

In existing literature, the proof of important result is often based on three spheres inequalities for (1.1),
(1.2). The qualitative unique continuation property (UCP) for (1.1), (1.2) has been proved in [1]. Our task
here is to derive a quantitative estimate of the UCP and three-sphere inequality for (1.1) and (1.2). The
main tool for deriving such quantitative estimate is the Carleman estimate. Unfortunately, we cannot apply
the Carleman estimate in [1] directly to our problem here. To overcome this difficulty, we borrow some ideas
in [10] to derive the estimates we need. The estimate of |D| is described in Theorem 2.1, which shows that
|D| can be bounded both from above and below by the difference of power for the unperturbed system
(without D) and the perturbed system (with D) under the fatness condition (Assumption 4 of Section 2).
Of course, it is more informative to study the problem without the fatness condition. To do this, we need
the quantitative form of the strong unique continuation property (SUCP) for (1.1) and (1.2), i.e. doubling
inequalities. However, whether the SUCP holds for (1.1) and (1.2) or not is still an unsolved problem.
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