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a b s t r a c t

In this article it is proved the existence of similarity solutions for a one-phase Stefan
problem with temperature-dependent thermal conductivity and a Robin condition
at the fixed face. The temperature distribution is obtained through a generalized
modified error function which is defined as the solution to a nonlinear ordinary
differential problem of second order. It is proved that the latter has a unique non-
negative bounded analytic solution when the parameter on which it depends assumes
small positive values. Moreover, it is shown that the generalized modified error
function is concave and increasing, and explicit approximations are proposed for
it. Relation between the Stefan problem considered in this article with those with
either constant thermal conductivity or a temperature boundary condition is also
analysed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The understanding of phase-change processes has been inspiring scientists from the earlier 18th century.
Already in 1831, Lamé and Clapeyron studied problems related to the solidification of the Earth planet [1].
Also the mathematical formulation of phase-change processes as free boundary problems dates from the
18th century, since it owes much to the ideas developed by Stefan in 1889 [2–4]. At present, their study is
still an active area of research. Besides phase-change processes are interesting in themselves, they attract
interests because they are present in a wide variety of situations, both natural and industrial ones. Glass
manufacturing and continuous casting of metals are examples of industrial activities involving them, some
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recent works in this area are [5,6]. Controlling side-effects of certain industrial processes or preventing future
problems derived from our energy-dependent lifestyle, are also examples of how phase-change processes arise
as a subject of study [7,8]. Permafrost phenomena or dynamics of snow avalanches are examples of natural
situations whose study involves phase-change processes, some recent articles in these subjects are [9–11]. We
refer the reader to [12,13] and the references therein for a recent survey in applications and future challenges
in free boundary problems. Other references can be seen in the last published Free Boundary Problems
International Conference Proceedings [14].

In this article we will focus on phase-change processes that are ensued from an external temperature
imposed at some part of the fixed boundary of a homogeneous material. A classical simplification in modelling
this sort of phenomena is to consider boundary conditions of Dirichlet type (temperature conditions). This
is based on the assumption that heat is instantaneously transferred from the external advise through which
a specific temperature is imposed to the material. In view that is physically unrealistic, several authors have
suggested to consider conditions of Robin type (convective conditions) since they mimic the fact that the
heat transfer at the boundary is proportional to the difference between the imposed temperature and the one
the material presents at its boundary (see for example the books [15,16]). Another classical simplification
when modelling phase-change processes is to consider that thermophysical properties are constant. Though
it is reasonable for most phenomena under moderate temperature variations [15], it is not what actually
happens as a rule. In fact, this hypothesis has been removed in many works in the attempt to improve
the mathematical model (see, for example [17–20]). All this have encouraged us to look at phase-change
processes with convective boundary conditions and non-constant physical properties.

In 1974, Cho and Sunderland studied a phase-change process for a one-dimensional semi-infinite material
with temperature-dependent thermal conductivity [21]. The dependence was assumed to be linear, which is
a quite good approximation of what actually happens with several materials (water, for example [15]). The
phase-change process was assumed to be ensued from a constant temperature imposed at the fixed boundary
of the body, what was modelled through a Dirichlet condition. For the resulting Stefan problem, Cho and
Sunderland have presented an exact similarity solution. The temperature was obtained through an auxiliary
function Φ that they have called a Modified Error (ME) function and that was defined as the solution to a
nonlinear ordinary differential problem of second order. Revisiting the work of Cho and Sunderland, a couple
of curiosities have arised. On one hand, the existence of the ME function was not proved there. Despite of
this lack of theoretical results, the ME function was widely used in the context of phase-change processes
before their existence and uniqueness were proved in the recent article [22] (see, for example, [19,23–31]).
On the other hand, by following the arguments presented in [21] it is obtained that the ME function must
satisfy a differential problem over a closed bounded interval [0, λ] with Φ(0) = 0, Φ(λ) = 1. Nevertheless,
in [21] it was considered a boundary value problem over [0, +∞) with Φ(0) = 0, Φ(+∞) = 1. Although in
this way it is clearer the relation between the modified and classical error functions (see [21,22] for further
details), the change made by Cho and Sunderland add some extra conditions on the temperature function.

In this article we consider a similar phase-change process to that studied in [21]. We are mainly motivated
by: (a) improving the modelling of the imposed temperature at the fixed boundary by considering a
convective boundary condition, (b) obtaining a solution of similarity type without any extra condition
on the temperature distribution. We will study a solidification process, but a completely similar analysis
can be done for the case of melting. Aiming for simplicity, we will restrict our presentation to a one-phase
process. That is, the case in which the material is initially liquid at its freezing temperature.

The organization of the paper is as follows. First (Section 2), we introduce the one-phase Stefan problem
through which we will study the phase-change process. In this section we also present a characterization for
any similarity solution to the Stefan problem in terms of a Generalized Modified Error (GME) function. This
will be defined as the solution to a nonlinear boundary value problem of second order. Similarly to [21], this
problem will depend on a positive parameter β related to the slope of the thermal conductivity as a linear
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