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a b s t r a c t

A new phase-field model is formulated to describe martensitic phase transitions
driven by material forces, in solid materials, e.g., shape memory alloys. This model
is a nonlinear degenerate parabolic equation of second order and its principal part is
not in divergence form in multi-dimensional case. The global existence of viscosity
solutions to an initial–boundary value problem for this model is proved.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Martensitic transformations play a key role in materials science, and occur in various materials covering
important alloys such as steels, shape memory alloys, see, e.g. [1]. They are displacive, diffusionless and
are responsible for the formation of some microstructure, thus determines properties of a material, for
example, shape memory effect [1–4]. Martensite, as a result of martensitic transformations, is a crucial
microstructure which can grow at temperatures close to absolute zero and at speeds in excess of 1000 ms−1,
faster than twice of the speed of sound. Thus by observing this process directly, it is very difficult to obtain
helpful information to understand its mechanism, instead mathematical modeling is a powerful tool [5],
etc., for instance, phase-field method, though it is quite young, has been proved extremely powerful to both
theoretical and numerical analysis of phenomena in materials science, we refer e.g., to [6–10].

As an attempt to understand this type of rapidly changing processes, which thus exists only several micro
seconds, H.-D. Alber and the second author of this article have proposed in [11,12] a phase-field model,
which is a system of a linear elasticity sub-system coupled to a nonlinear degenerate parabolic equation of
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second order. To formulate this model, we introduce some notations. Let Ω ⊂ R3 be an open domain with
smooth boundary ∂Ω . It represents the material points of a solid body. Define Qt := (0, t)×Ω . The different
phases are characterized by the order parameter S(t, x) ∈ R. A value of S(t, x) near to zero indicates that
the material is in the matrix phase at the point x ∈ Ω at time t, a value near to one indicates that the
material is in the second phase. The other unknowns are the displacement u(t, x) ∈ R3 of the material point
x at time t and the Cauchy stress tensor T (t, x) ∈ S3, where S3 denotes the set of symmetric 3×3-matrices.
In what follows, ∇x and ∆x are, respectively, the gradient and Laplace operators. We use ∇xu to denote
the 3 × 3-matrix of first order derivatives of u, the deformation gradient, (∇xu)T to denote the transposed
matrix. And

ε(∇xu) = 1
2
(
∇xu+ (∇xu)T

)
is the strain tensor. St denotes the partial derivative of S with respect to t, and

|∇xS| =
( 3∑

i=1
|∂xi

S|2
) 1

2
.

Given are b : [0,∞)×Ω → R3, the volume force, ε̄ ∈ S3, a given matrix which is called the misfit strain, and
D : S3 → S3, the elasticity tensor that is chosen as a linear, symmetric, positive definite mapping. Finally,
we choose the following free energy function ψ

ψ(ε, S) = 1
2
(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ̂(S), (1.1)

here ψS denotes the partial derivative of ψ, the function ψ̂ ∈ C2(R, [0,∞)) is chosen as a double-well
potential with two minima at S = 0 and S = 1, and one maximum in-between. The scalar product of two
matrices is A ·B =

∑
aijbij . And c > 0 is a constant and ν is a small positive constant.

Then the quasi-static equations for the unknown (u, T, S) read

− divx T = b, (1.2)

T = D
(
ε(∇x u) − ε̄S

)
, (1.3)

St = −c
(
ψS(ε(∇xu), S) − ν∆xS

)
|∇xS|. (1.4)

To derive this model, we choose a total free energy Ψ(t) =
∫
Ω
ψ∗(ε, S,∇xS)dx with the density

ψ∗(ε, S,∇xS) = ψ(ε, S) + ν

2 |∇xS|2,

and select a flux function

q = q(ut, T, St,∇xS) = Tut + νSt∇xS.

By straightforward computations we can find easily that if Eqs. (1.2)–(1.4) are satisfied, then there holds

∂

∂t
ψ∗ + divx q ≤ b · ut

in the sense of distribution. Namely, the validness of the second law of thermodynamics is guaranteed. For
the details, we refer to Alber and Zhu [11,13].

Due to that the principal part in Eq. (1.4) degenerates as the gradient of S vanishes, and is not in
divergence form in the multi-dimensional case, the investigation of the well-posedness of model (1.2)–(1.4)
is thus difficult.
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