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a b s t r a c t

In this paper we mainly investigate the Cauchy problem of the finite extensible
nonlinear elastic (FENE) dumbbell model with dimension d ≥ 2. We first proved
the local well-posedness for the FENE model in Besov spaces by using the
Littlewood–Paley theory. Then by an accurate estimate we get a blow-up criterion.
Moreover, if the initial data is a small perturbation around equilibrium, we obtain
a global existence result. Our obtained results generalize and cover recent results in
Masmoudi (2008).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the finite extensible nonlinear elastic (FENE) dumbbell model [1]:

∂tu+ (u · ∇)u− ν∆u+∇P = divτ, divu = 0,
∂tψ + (u · ∇)ψ = divR[−∇u ·Rψ + β∇Rψ +∇RUψ],

τij =

B

(Ri∇jU)ψdR,

u|t=0 = u0, ψ|t=0 = ψ0,

(β∇Rψ +∇RUψ) · n = 0 on ∂B(0, R0).

(1.1)

In (1.1) ψ(t, x,R) denotes the distribution function for the internal configuration and u(t, x) stands for the
velocity of the polymeric liquid, where x ∈ Rd and d ≥ 2 means the dimension. Here the polymer elongation R
is bounded in ball B = B(0, R0) of Rd which means that the extensibility of the polymers is finite. β = 2kBTa

λ ,
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where kB is the Boltzmann constant, Ta is the absolute temperature and λ is the friction coefficient. ν > 0
is the viscosity of the fluid, τ is an additional stress tensor and P is the pressure. The Reynolds number
Re = γ

ν with γ ∈ (0, 1) and the density ρ =

B
ψdR. Moreover the potential U(R) = −k log(1− ( |R||R0| )

2) for
some constant k > 0.

This model describes the system coupling fluids and polymers. The system is of great interest in many
branches of physics, chemistry, and biology, see [1,2]. In this model, a polymer is idealized as an “elastic
dumbbell” consisting of two “beads” joined by a spring that can be modeled by a vector R. At the level of
liquid, the system couples the Navier–Stokes equation for the fluid velocity with a Fokker–Planck equation
describing the evolution of the polymer density. This is a micro–macro model (for more details, one can refer
to [1–3]).

In the paper we will take β = 1 and R0 = 1. Notice that (u, ψ) with u = 0 and

ψ∞(R) = e−U(R)
B
e−U(R)dR

= (1− |R|2)k
B

(1− |R|2)kdR
,

is a stationary solution of (1.1). Thus we can rewrite (1.1) for the following system:

∂tu+ (u · ∇)u− ν∆u+∇P = divτ, divu = 0,

∂tψ + (u · ∇)ψ = divR


−∇u ·Rψ + ψ∞∇R

ψ

ψ∞


,

τij =

B

(Ri∇jU)ψdR,

u|t=0 = u0, ψ|t=0 = ψ0,

ψ∞∇R
ψ

ψ∞
· n = 0 on ∂B(0, 1).

(1.2)

We have to add a boundary condition to insure the conservation of ψ, namely, (−∇u·Rψ+ψ∞∇R ψ
ψ∞

)·n = 0.
The second equation in (1.2) can be understood in the weak sense: for any function g(R) ∈ C1(B), we have

∂t


B

gψdR+ (u · ∇)

B

gψdR = −

B

∇Rg

−∇u ·Rψ + ψ∞∇R

ψ

ψ∞


dR.

Definition 1.1. Assume that u0 ∈ D′(Rd) and ψ0 ∈ D′(Rd × B). A couple of functions (u, ψ) ∈ C([0, T ];
D′(Rd)) × C([0, T ];D′(Rd × B)) with div u = 0 is called a solution for (1.2) if u ⊗ u, P, τ ∈
L1((0, T );D′(Rd)), uψ, ∇u · Rψ, ψ∞∇R ψ

ψ∞
∈ L1((0, T );D′(Rd × B)), and for each (v, φ) ∈ C1([0, T ];

C∞0 (Rd))× C1([0, T ];C∞0 (Rd ×B)) with v(T ) = 0 and φ(T ) = 0, we have T

0


Rd
u∂tv + (u⊗ u) : ∇v − νu∆v + P · div v =

 T

0


Rd
τ : v +


Rd
u0v0, (1.3) T

0


Rd×B

ψ∂tφ+ uψ · ∇xφ =
 T

0


Rd×B


−∇u ·Rψ + ψ∞∇R

ψ

ψ∞


· ∇Rφ+


Rd×B

ψ0φ0. (1.4)

Let us mention that the earliest local well-posedness for (1.1) was established by Renardy in [4], where the
author considered the Dirichlet problem with d = 3 for smooth boundary and proved local existence for (1.1)
in
4
i=0 C

i([0, T );H4−i) ×
3
i=0
3−i
j=0 C

i([0, T );Hj) with potential U(R) = (1 − |R|2)1−σ for σ > 1. Later,
Jourdain, Lelièvre, and Le Bris [5] proved local existence of a stochastic differential equation with potential
U(R) = −k log(1−|R|2) in the case k > 3 for a Couette flow. Zhang and Zhang [6] proved local well-posedness
of (1.1) with d = 3 in

2
i=0 H

i([0, T );H4−2i)×
1
i=0 H

i([0, T );H3−2i) for k > 38. Lin, Zhang, and Zhang [7]
proved global well-posedness of (1.2) with d = 2 for k > 6 in C([0, T ];Hs)×C([0, T ];Hs(R2;H1

0 (D))), where
s ≥ 3. Masmoudi [2] proved local well-posedness of (1.2) in C([0, T );Hs)×C([0, T );Hs(Rd;L2)), s > 1 + d

2
and global well-posedness of (1.2) when the initial data is perturbation around equilibrium for k > 0. In
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