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the local well-posedness for the FENE model in Besov spaces by using the
Littlewood—Paley theory. Then by an accurate estimate we get a blow-up criterion.
Moreover, if the initial data is a small perturbation around equilibrium, we obtain
a global existence result. Our obtained results generalize and cover recent results in
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1. Introduction

In this paper we consider the finite extensible nonlinear elastic (FENE) dumbbell model [1]:

O+ (u-V)u—vAu+ VP = divr, divu =0,

oy + (u- V) = divg[—Vu - R + BV gy + V rUY),

_ / (RiV,U)dR, (1.1)
B

ult=0 = Uo, Yli=0 = o,

(BVRrY + VeUY) -n =0 on 0B(0, Ry).

Tij

In (1.1) ¢(t,x, R) denotes the distribution function for the internal configuration and u(t, z) stands for the
velocity of the polymeric liquid, where 2 € R% and d > 2 means the dimension. Here the polymer elongation R
is bounded in ball B = B(0, Ry) of R? which means that the extensibility of the polymers is finite. 3 = 2“‘%,
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where kp is the Boltzmann constant, T, is the absolute temperature and A is the friction coefficient. v > 0
is the viscosity of the fluid, 7 is an additional stress tensor and P is the pressure. The Reynolds number
Re =2 with v € (0,1) and the density p = [, 1»dR. Moreover the potential U (R) = —klog(1 — (%)2) for
some constant k > 0.

This model describes the system coupling fluids and polymers. The system is of great interest in many
branches of physics, chemistry, and biology, see [1,2]. In this model, a polymer is idealized as an “elastic
dumbbell” consisting of two “beads” joined by a spring that can be modeled by a vector R. At the level of
liquid, the system couples the Navier—Stokes equation for the fluid velocity with a Fokker—Planck equation
describing the evolution of the polymer density. This is a micro-macro model (for more details, one can refer
to [1-3]).

In the paper we will take § =1 and Ry = 1. Notice that (u,) with v = 0 and

e R (1R

VeolR) = T iR~ T (1= |RP)FR

is a stationary solution of (1.1). Thus we can rewrite (1.1) for the following system:
O+ (u-V)u—vAu+ VP = divr, divu =0,

Tij = /B(RNJ-U)wdR, (12
u|t:0 = Ugp, ¢|t:0 = 11107
¢OOVR% -n=0 on dB(0,1).

We have to add a boundary condition to insure the conservation of ¢, namely, (—Vu- R+ V Rwi) -n=0.
The second equation in (1.2) can be understood in the weak sense: for any function g(R) € C'(B), we have

. - Vu. v
8t/Bgz/1dR+(u V)/Bgz/JdR— /Bng{ Vu RY + oV — | dR

Definition 1.1. Assume that ug € D'(RY) and ¢y € D'(R% x B). A couple of functions (u,v) € C([0,T];
D'(RY)) x C([0,T); D'(R? x B)) with div u = 0 is called a solution for (1.2) if u® u, P, 7 €
LY((0,7); D'(RY)),uyp, Vu - Ry, 1/JOOVR¢% € L'((0,7); D'(RY x B)), and for each (v,¢) € C([0,T7;
Cs°(RY)) x CL([0,T); C§°(R? x B)) with v(T) = 0 and ¢(T) = 0, we have

T T
/ / u@tv—l—(u@u):Vv—uuAv—i—P-divv:/ / T:v+/ UoV0, (1.3)
0o Jrd 0o Jrd R

/OT/RMBMMW'VM_/OT/WXB {VU-Rﬂ)Jrl//ooVRq;i} .vR¢+/RdXB¢O¢O. (1.4)

Let us mention that the earliest local well-posedness for (1.1) was established by Renardy in [4], where the
author considered the Dirichlet problem with d = 3 for smooth boundary and proved local existence for (1.1)
in i_o C*([0,T); HA~%) x Mo M;=4 C*([0, T); HY) with potential U(R) = (1 — [R|?)'~" for ¢ > 1. Later,
Jourdain, Leliévre, and Le Bris [5] proved local existence of a stochastic differential equation with potential
U(R) = —klog(1—|R|?) in the case k > 3 for a Couette flow. Zhang and Zhang [6] proved local well-posedness
of (1.1) with d = 3 in (7_, H*([0,T); H*~%) x Ni_, H'([0,T); H*>~2) for k > 38. Lin, Zhang, and Zhang 7]
proved global well-posedness of (1.2) with d = 2 for k > 6 in C([0, T]; H®) x C ([0, T]; H*(R?*; H}(D))), where
s > 3. Masmoudi [2] proved local well-posedness of (1.2) in C([0,T); H*) x C([0,T); H*(R% L?)),s > 1+ ¢
and global well-posedness of (1.2) when the initial data is perturbation around equilibrium for &£ > 0. In
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