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a b s t r a c t

We correct an error in the original paper [Renormalised solutions in thermo-visco-
plasticity for a Norton–Hoff type model. Part I: The truncated case, Nonlinear
Anal. RWA 28 (2016) 140–152]. The proof of Theorem 3.2 is wrong and therefore
we present here correct proof based on the same methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During review of the article Renormalised solutions in thermo-visco-plasticity for a Norton–Hoff type
model. Part II: the limit case, Nonlinear Analysis-Real World Applications, 31 (2016), p. 643-660 one of the
reviewers has read the first part entitled Renormalised solutions in thermo-visco-plasticity for a Norton–Hoff
type model. Part I: the truncated case, Nonlinear Analysis-Real World Applications, 28 (2016), p. 140-152.
He/She has observed that the proof of Theorem 3.2 in the first part is not completely justified. After this
remark, we have noticed that the proof of Theorem 3.2 is unclear while the statement of Theorem 3.2 is
correct (without uniqueness). In this corrigendum we present the right statement of Theorem 3.2 and its
proof. The main idea of the proof is also based on a fixed point argument.

2. Theorem 3.2

Suppose that the given data satisfy all requirements of Theorem 1.2. For all λ > 0 the system (3.1) with
initial–boundary conditions (3.2) and (3.3) possesses global in time solution (u, εp, θ) such that
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(u, εp) ∈ H1(0,T; H1(Ω ;R3)) × W 1,∞(0,T; L2(Ω ; S3
dev)),

θ ∈ L∞(0,T; H1(Ω ;R)) and θt ∈ L2(0,T; L2(Ω ;R)).

Proof: We are going to use the Schaefer’s fixed point theorem. Fix θ⋆ ∈ Lr(0,T; W 1,r(Ω ;R)), where
r ∈ (1, 2). Let us consider the following initial–boundary value problem

θt − ∆θ = T 1
ϵ

(
εp

t · T
)

− f
(
T 1

ϵ
(θ⋆ + θ̃)

)
div ut ,

∂ θ

∂ n |∂Ω×(0,T)
= 0, θ(0) = θ0, (1)

where the functions u, εp, T are the unique solution of the problem (3.4) (in the published article) with the
input function θ⋆. The right-hand side of (1) belongs to L2(0,T; L2(Ω ;R)). Using the maximal regularity
(see Amann [1] and [2]) of solutions to linear parabolic problems (1) we obtain that the problem (1) admits
a solution in the class

θ ∈ Lr(0,T; W 2,r(Ω ;R)) , θt ∈ Lr(0,T; Lr(Ω ;R)) .

Hence, we have defined an operator

Lr(0,T; W 1,r(Ω ;R)) ∋ θ⋆ → R(θ⋆) = θ ∈ Lr(0,T; W 1,r(Ω ;R)).

Next we divide the proof into three steps.
Step 1 (continuity of the operator R)
Let us assume that θ⋆

n → θ⋆ in Lr(0,T; W 1,r(Ω ;R)). Lemma 3.1 (in the published article) yields that for
all n = 1, 2, . . ., there exists a global in time solution

(un, Tn, εp
n) ∈ H1(0,T; H1(Ω ;R3)) × H1(0,T; L2(Ω ; S3)) × W 1,∞(0,T; L2(Ω ; S3

dev))

and a global in time solution

(u, T, εp) ∈ H1(0,T; H1(Ω ;R3)) × H1(0,T; L2(Ω ; S3)) × W 1,∞(0,T; L2(Ω ; S3
dev))

of the system (3.4) with the input functions θ⋆
n and θ⋆, respectively. Moreover the weak formulation of the

system (3.4) yields ∫
Ω

⟨
Tn − T, ε(v)

⟩
dx +

∫
Ω

⟨
C

(
ε((un)t) − ε(ut)

)
, ε(v)

⟩
dx

=
∫
Ω

(
f

(
T 1

ϵ
(θ⋆

n + θ̃)
)

− f
(
T 1

ϵ
(θ⋆ + θ̃)

))
div v dx (2)

for all v ∈ H1
0 (Ω ,R3). Putting v = (un)t − ut in (2) we obtain
1
2

d

dt

( ∫
Ω

⟨
C−1(Tn − T ), Tn − T

⟩
dx

)
+

∫
Ω

⟨
C

(
ε((un)t) − ε(ut)

)
, ε((un)t) − ε(ut)

⟩
dx

= −
∫
Ω

⟨
Tn − T, (εp

n)t − εp
t

⟩
dx

+
∫
Ω

(
f

(
T 1

ϵ
(θ⋆

n + θ̃)
)

− f
(
T 1

ϵ
(θ⋆ + θ̃)

))
div

(
(un)t − ut

)
dx. (3)

The first integral on the right-hand side of (3) is non positive. Using the Cauchy–Schwarz inequality with
small weight and integrating with respect to time in (3) we get∫

Ω

⟨
C−1(Tn − T ), Tn − T

⟩
dx +

∫ t

0

∫
Ω

⟨
C

(
ε((un)t) − ε(ut)

)
, ε((un)t) − ε(ut)

⟩
dx dτ

≤ C(ν)
∫ t

0
∥f

(
T 1

ϵ
(θ⋆

n + θ̃)
)

− f
(
T 1

ϵ
(θ⋆ + θ̃)

)
∥2

L2(Ω ;R)
dτ

+ν

∫ t

0
∥ε((un)t) − ε(ut)∥2

L2(Ω ;R) dτ. (4)
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