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1. Introduction

The Korteweg-de Vries equation
Up + Uy + Upze = 0 (1.1)

was derived as a model of unidirectional propagation of water waves with small amplitude in a channel.
It was first introduced by Boussinesq and then reformulated by Diederik Korteweg and Gustav de Vries
in 1885. The function u(z,t) in (1.1) represents the elongation of the wave at time ¢ and position x. The
solutions of this nonlinear and dispersive equation are solitary waves. In physical applications, however, one
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can expect some dissipation of energy, as well as external excitation. To account for these effects, damping
and forcing terms are added to the model

U + Uy + Ugge + YU = f. (1.2)

Existence and the uniqueness of the solution of the damped and driven Korteweg—de Vries (KdV) equation
subject to the boundary conditions

u(t,z) =u(t,x + L), V(t,z) € R xR, (1.3)

can be shown by adjusting the methods used for undamped KdV in [1,2] or [3]. The existence of the weak
global attractor A, for (1.2)—(1.3), was shown in [4], and the strong global attractor in H? was shown in [5].
In particular, it has been shown in [5] that there exists a constant R, that depends only on v and |f]|g2,
such that
sup |u(s)|g2 < R, (1.4)
sER
for every u(-) C A. We observe that the estimates detailed in Section 4, can be followed almost line by line
in order to obtain an explicit bound for R.

For many strongly dissipative PDE’s, capturing the attractor by a finite system of ordinary differential
equations is achieved by restricting the equation to an inertial manifold, as is done for Kuramoto—Sivashinsky,
Ginzburg-Landau and certain reaction—diffusion equations (see, e.g., [6] and references therein). An inertial
manifold is a finite dimensional Lipschitz positively invariant manifold which attracts all the solutions
at an exponential rate. A sufficient condition for the existence of an inertial manifolds is the presence
of large enough gaps in the spectrum of the linear dissipative operator, i.e. the presence of separation
of scales in the underlying dynamics. The existence of inertial manifolds is still out of reach for various
dissipative equations, including the two-dimensional Navier—Stokes equations, and the damped and driven
KdV equations (1.2)—(1.3). Our aim here is to capture the attractor in H?, of the damped and driven KdV,
by the dynamics of an ordinary differential equation, called a determining form, which is defined in the
phase space of trajectories.

A determining form is found for the 2D Navier—Stokes equations (NSE) in [7] by using finitely many
determining modes. In that work, the trajectories in the attractor of the 2D NSE are identified with traveling
wave solutions of the determining form. Another type of determining form is found for the 2D NSE by the
same authors in [8]. The steady state solutions of this second kind of determining form are precisely the
trajectories in the global attractor of the 2D NSE. Dissipativity (viscosity) plays a fundamental role in
establishing a determining form for this equation.

In contrast, the weakly damped and driven nonlinear Schrodinger equation (NLS) and weakly damped
and driven KdV are dispersive equations. They are not strongly dissipative due to the absence of viscosity.
To embed the attractors of these systems in the long time dynamics of ordinary differential equations
requires different techniques. Recently, we have shown that a determining form of the second kind exists for
the damped and driven NLS (see [9]) using a feedback control term involving the Fourier projection of a
trajectory in the attractor. In this paper we adapt the approach in [8,9] for the KdV. As in [9] the analysis
here uses compound functionals motivated by the Hamiltonian structure of the corresponding systems.

The idea for determining forms starts with the property of determining modes (see [10]). A projector
P is said to be determining if whenever u;(-),u2(-) C A have the same projection Pu;(t) = Pus(t) for
all t € R, they are in fact the same solution. A determining projector P defines a map W on the set
S = {Pu(-)|u(-) € A}. A key step in constructing a determining form is to extend this map to a function
space. If P = Py is the projection onto the first N Fourier modes, the number N is called the number of
determining modes. Like the dimension of A4, N serves as a measure of the complexity of the flow, and the
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