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a b s t r a c t

In this paper, we study the question of the existence of infinitely many weak solutions
for nonlocal equations of fractional Laplacian type with homogeneous Dirichlet
boundary data, in presence of a superlinear term. Starting from the well-known
Ambrosetti–Rabinowitz condition, we consider different growth assumptions on
the nonlinearity, all of superlinear type. Furthermore, we give an extension of
Ambrosetti–Rabinowitz condition, a non-Ambrosetti–Rabinowitz condition and
apply to study the fractional Laplacian equation. We obtain some different existence
results in this setting by using Fountain Theorem. Our results are extension of some
problems studied by Bisci et al. (2016) and Binlin et al. (2015).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Recently, nonlocal fractional problems have been appearing in the literature in many different contexts,
both in the pure mathematical research and in concrete real-world application. Indeed, fractional and non-
local operators appear in many diverse fields such as optimization, finance, phase transitions, stratified
materials, anomalous diffusion, crystal dislocation, soft thin films, semipermeable membranes, flame propa-
gation, conversion laws, ultra-relativistic of quantum mechanics, quasi-geostrophic flows, multiple scattering,
minimal surface, materials science and water waves. In this paper, we consider the existence of infinitely
many solutions of two following problems:

LKu = f(x, u) in Ω ,
u = 0 in Rn \ Ω

(1.1)

and 
LKu− λu = f(x, u) in Ω ,
u = 0 in Rn \ Ω .

(1.2)
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When λ = 0, the problem (1.2) gives the problem (1.1). The Ω is an open bounded subset of Rn with
continuous boundary ∂Ω , n > 2s, s ∈ (0, 1), then term f satisfies the different superlinear conditions, and
LK is the integrodifferential operator which is defined as follows:

LKu(x) :=


Rn
(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ Rn, (1.3)

where the kernel K : Rn \ {0} → (0,+∞) is such that

mK ∈ L1(Rn), where m(x) = min{|x|2, 1}, (1.4)

K(x) = K(−x) for all x ∈ Rn (1.5)

and there exists θ > 0 such that

K(x) ≥ θ|x|−(n+2s) (1.6)

for any x ∈ Rn \ {0}. A model for K is given by the singular kernel K(x) = |x|−(n+2s) which gives rise to
the fractional Laplace operator −(−∆)s, defined as

−(−∆)su(x) :=


Rn

u(x+ y) + u(x− y)− 2u(x)
|y|n+2s dy, x ∈ Rn.

Under superlinear and subcritical conditions on f , Servadei–Valdinoci [1,2] proved the existence of a nontriv-
ial solution of (1.1) and (1.2) by using the Mountain Pass Theorem [3] and Linking Theorem [4]. Motivated
by these works, in this paper we will study the existence of infinitely solutions of (1.1) and (1.2), as an
application of Fountain Theorem due to Bartsch [5]. Our results are extension of some problems studied by
Bisci–Repovs–Servadei [6] and Binlin–Bisci–Servadei [7].

1.1. Variational formulation of the problem

In order to study problem (1.1), we shall consider their weak formulation, given by


Rn×Rn
(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dxdy =


Ω

f(x, u(x))ϕ(x)dx, ϕ ∈ X0,

u ∈ X0

(1.7)

which represents the Euler–Lagrange equation of energy functional IK : X0 → R defined as

IK(u) := 1
2


Rn×Rn

|u(x)− u(y)|2K(x− y)dxdy −

Ω

F (x, u(x))dx, (1.8)

where the function F is the primitive of f with respect to the second variable, that is,

F (x, t) =
 t

0
f(x, τ)dτ. (1.9)

Similarly, in order to study problem (1.2), we shall consider their weak formulation, given by


Rn×Rn
(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dxdy − λ


Ω

u(x)ϕ(x)dx =

Ω

f(x, u(x))ϕ(x)dx,

u ∈ X0, ϕ ∈ X0

(1.10)

which represents the Euler–Lagrange equation of energy functional JK,λ : X0 → R defined as

JK,λ(u) := 1
2


Rn×Rn

|u(x)− u(y)|2K(x− y)dxdy − λ

2


Ω

|u(x)|2dx−

Ω

F (x, u(x))dx. (1.11)

Here, the space X0 is defined by

X0 := {g ∈ X : g = 0 in x ∈ Rn \ Ω},
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