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a b s t r a c t

We study an initial–boundary-value problem for a quasilinear thermoelastic plate of
Kirchhoff & Love-type with parabolic heat conduction due to Fourier, mechanically
simply supported and held at the reference temperature on the boundary. For this
problem, we show the short-time existence and uniqueness of classical solutions
under appropriate regularity and compatibility assumptions on the data. Further,
we use barrier techniques to prove the global existence and exponential stability
of solutions under a smallness condition on the initial data. It is the first result of
this kind established for a quasilinear non-parabolic thermoelastic Kirchhoff & Love
plate in multiple dimensions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊂ Rd (d = 2 or 3) be a smooth bounded domain representing the mid-plane of a thermoelastic
plate. With w and θ denoting the vertical deflection and an appropriately weighted thermal moment with
respect to the plate thickness, both depending on a scaled time variable t > 0 and the space variable
(x1, x2) ∈ Ω , the nonlinear Kirchhoff & Love thermoelastic plate system reads as

wtt − γ△wtt + a(−△w)△2 w + α△θ = f(−△w,−∇△w) in (0,∞)× Ω , (1.1a)
βθt − η△θ + σθ − α△wt = 0 in (0,∞)× Ω (1.1b)

along with the boundary conditions (hinged mechanical/Dirichlet thermal)

w = △w = θ = 0 in (0,∞)× Ω (1.1c)
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and the initial conditions

w(0, ·) = w0, wt(0, ·) = w1, θ(0, ·) = θ0 in Ω . (1.1d)

Here, α, β, γ, η, σ are positive constants and a : R→ (0,∞) as well as f : R×Rd → R are smooth functions.
For thin plates, γ behaves like h2 as h → 0 (cf. [1, Equation (2.16), p. 13]) and is, therefore, neglected in
some literature. In Section 2, we present a short physical deduction of Eqs. (1.1a)–(1.1d).

Lasiecka et al. [2] studied a quasilinear PDE system similar to (1.1a)–(1.1d) in a smooth, bounded domain
Ω of Rd with d ≤ 3 given by a Kirchhoff & Love plate with parabolic heat conduction

wtt +△2 w −△θ + a△

(△w)3 = 0 in (0, T )× Ω , (1.2a)

θt −△θ +△wt = 0 in (0, T )× Ω (1.2b)

together with boundary conditions (1.1c) and initial conditions (1.1d) for an arbitrary T > 0. For
the initial–boundary-value problem (1.2a)–(1.2b), (1.1c)–(1.1d), they proved the global existence of weak
solutions (w, θ) and their uniform decay in the norm of

W 1,∞0, T ;L2(Ω)

∩ L∞


0, T ;W 2,4(Ω)


× L∞


0, T ;W 1,2(Ω)


.

The existence proof was based on a Galerkin approximation and compactness theorems, while the uniform
stability was obtained with the aid of energy techniques.

In their monograph [3], Chueshov and Lasiecka give an extensive study on the von Kármán plate system
both in pure elastic and thermoelastic cases. With w : Ω → R denoting the vertical displacement and
v : Ω → R standing for the Airy stress function of a plate with its mid-plane occupying in the reference
configuration a domain Ω ⊂ R2, the pure elastic version of Kármán plate system reads as

wtt − α△wtt +△2 u− [u, v + F0] + Lu = p in (0,∞)× Ω , (1.3a)
△2 v + [u, u] = 0 in (0,∞)× Ω , (1.3b)

where [v, w] := vx1x1wx2x2+vx2x2wx1x1−2vx1x2wx1x2 , L is a first-order differential operator and F0, p : Ω → R
are given “force” functions. Imposing standard initial conditions, under various sets of boundary conditions,
Chueshov and Lasiecka proved Eqs. (1.3a)–(1.3b) possess a unique generalized, weak or strong solution
depending on the data regularity. The proof was based on a nonlinear Galerkin-type approximation. Further,
they studied the semiflow associated with the solution to Eqs. (1.3a)–(1.3b), in particular, they analyzed its
long-time behavior and the existence of attracting sets. Various damping mechanisms, thermoelastic effects,
structurally coupled systems such as acoustic chambers or gas flow past a plate were studied. An extremely
detailed and comprehensive literature overview was also given.

Denk et al. [4] considered a linearization of (1.2a)–(1.2b), which corresponds to letting a ≡ 0, in a bounded
or exterior C4-domain of Rd for d ≥ 2 subject to the initial conditions from Eq. (1.1d) and the boundary
conditions

w = ∂νw = θ = 0 on (0, T )× ∂Ω , (1.4)

where ∂ν = (∇·)T ν and ν denotes the outer unit normal vector to Ω on ∂Ω . By proving a resolvent estimate
both in the whole space and in the half-space and employing localization techniques, they showed that the
C0-semigroup for (w,wt, θ) on the space

W 2,p
D (Ω)× Lp(Ω)× Lp(Ω) with W 2,p

D (Ω) = {u ∈W 2,p(Ω) | u = ∂νu = 0 on ∂Ω}

is analytic. In case Ω is bounded, they also proved an exponential stability result for the semigroup.
Lasiecka and Wilke [5] presented an Lp-space treatment of Eqs. (1.2a)–(1.2b), (1.1c)–(1.1d) in bounded

C2-domains Ω of Rd. By proving the maximal Lp-regularity for the linearized problem, they adopted the
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