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a b s t r a c t

We prove the existence of stationary turbulent flows with arbitrary positive vortex
circulation on non-simply connected domains. Our construction yields solutions for
all real values of the inverse temperature with the exception of a quantized set, for
which blow-up phenomena may occur. Our results complete the analysis initiated
in Ricciardi and Zecca (2016).
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1. Introduction and main results

Motivated by the statistical mechanics description of turbulent 2D Euler flows in equilibrium, we are
interested in the existence of solutions to the following problem:

−∆u = λ


[0,1] αe

αu P(dα)
[0,1]×Ω

eαu P(dα)dx
in Ω

u = 0 on ∂Ω ,
(∗)λ

where Ω ⊂ R2 is a smooth bounded domain, λ > 0 is a constant and P ∈ M([0, 1]) is a Borel probability
measure. Problem (∗)λ was derived by Neri [1] within Onsager’s pioneering framework [2], with the aim of
including the case of variable vortex intensities. More precisely, in [1] the following mean field equation is
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derived: −∆v =


[−1,1] re

−βrv P(dr)
[−1,1]×Ω

e−βrv P(dr)dx
in Ω

v = 0 on ∂Ω .
1.1

Here, v is the mean field stream function of an incompressible turbulent Euler flow, the Borel probability
measure P ∈ M([−1, 1]) describes the vortex intensity distribution and β ∈ R is a constant related to the
inverse temperature. The mean field equation (1.1) is derived from the classical Kirchhoff–Routh Hamiltonian
for the N -point vortices system:

HN (r1, . . . , rN , x1, . . . , xN ) =

i ̸=j
rirjG(xi, xj) +

N
i=1
r2iH(xi, xi),

in the limit N → ∞, under the stochastic assumption that the ri’s are independent identically distributed
random variables with distribution P. In the above formula, for x, y ∈ Ω , x ̸= y, G(x, y) denotes the Green’s
function defined by 

−∆G(·, y) = δy in Ω
G(·, y) = 0 on ∂Ω

and H(x, y) denotes the regular part of G, i.e.

H(x, y) = G(x, y) + 1
2π log |x− y|. 1.2

Setting u := −βv and λ = −β, and assuming that

suppP ⊂ [0, 1], 1.3

problem (1.1) takes the form (∗)λ. We recall that

suppP := {α ∈ [−1, 1] : P(N) > 0 for any open neighborhood N of α}.

Assumption (1.3) corresponds to the case of physical interest where all vorticities have the same orientation.
We observe that without loss of generality we may assume

1 ∈ suppP. 1.4

Indeed, suppose that sup suppP = ᾱ ∈ (0, 1). Then, (∗)λ is equivalent to−∆u = λ


[0,ᾱ] αe

αu P(dα)
[0,ᾱ]×Ω

eαu P(dα)dx
in Ω

u = 0 on ∂Ω .

By the change of variables α = α′ᾱ, P̄(A) = P(ᾱA) for all Borel sets A ⊂ [0, 1], and setting ū = ᾱu, we find
that ū satisfies 

−∆ū = ᾱ2λ


[0,1] α

′eα
′ū P̄(dα′)

[0,1]×Ω
eα′ū P̄(dα′)dx

in Ω

u = 0 on ∂Ω ,

which is nothing but (∗)ᾱ2λ, with P̄ satisfying (1.4). Henceforth, we always assume (1.4).
When P(dα) = δ1(dα) problem (∗)λ reduces to the standard mean field problem−∆u = λ

eu
Ω
eu dx

in Ω

u = 0 on ∂Ω ,
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