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a b s t r a c t

We deal with a model for an elastic material with a cohesive crack along a
prescribed fracture set. We consider two n-dimensional elastic bodies and a cohesive
law, on their common interface, with incompenetrability constraint and general
loading–unloading regimes. We first provide a time-discrete evolution by means of
local minimizers of the energy with respect to the L2-norm of the crack opening
displacement. The choice of this norm is due to technical reasons (the λ-convexity
of the energy) and is in analogy with the classical approach in quasi-static brittle
fracture, where the evolution of the system is condensed into the evolution of the
crack. In the “time-continuous” limit we obtain a BV -evolution, in parametrized
form, characterized by Karush–Kuhn–Tucker conditions, for the internal variable,
equilibrium and energy identity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Starting from pioneering works in mechanics (see [1–3] for basic models) the analysis of cohesive zone
models has obtained much attention in the recent years, especially due to the numerous applications in
engineering. Analysis has been carried on by several authors under different settings and considering several
mechanical aspects of the problem. Recently a common assumption relies in considering models where the
fracture is confined to a prescribed interface between two elastic or visco-elastic bodies. This hypothesis is
considered in many contributions ([4–13], and references therein) and is also assumed in the present work.

Let us spend some words on the model we consider: let T > 0, we consider a reference configuration
Ω = (Ω+ ∪ Ω−) ⊂ Rn given by the union of two elastic bodies, separated by an interface K = ∂Ω+ ∩ ∂Ω−

representing the crack. The displacement u : [0, T ] × Ω → Rn has linearized strain ϵ(u) and signed opening
displacement [[u]] = u+ − u− on K. A fundamental feature of our model is the presence of an internal
variable ξ : [0, T ] ×K → [0,+∞] taking into account the history of the separation between the two bodies
(see e.g. [14,15]); ξ(x) represents the maximum separation that has taken place at the point x ∈ K during
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the evolution. In particular ξ(x) = 0 means that no opening of the crack has still happened at x. As
a consequence, the internal variable satisfies the irreversibility condition ξ̇ ≥ 0 while the crack opening
satisfies |[[u]]| ≤ ξ. In particular dissipation occurs only when ξ̇ > 0 and |[[u]]| = ξ (loading) while a different
non-dissipative mechanical behaviour occurs when ξ̇ = 0 and |[[u]]| < ξ.

We study a quasi-static evolution for the energy

F (u, ξ) =
∫
Ω

W (ϵ(u)) dx+
∫
K

φ([[u]], ξ, ν) dHn−1,

where ν is the unit normal on K, W is the bulk elastic energy, and φ is the cohesive potential. For the precise
technical and mechanical assumptions the reader is referred to Section 2; we point out that φ is λ-convex
w.r.t. [[u]], non-decreasing w.r.t. ξ, and that it takes into account both infinitesimal incompenetrability and
different loading–unloading regimes. We remark that in this representation the potential φ can be written
also as φ([[u]], ξ, ν) = φs([[u]], ξ, ν) + φd(ξ) where φs is the stored energy while φd is the dissipated energy;
in particular, the system is rate-independent since dissipation, i.e. rate of dissipated energy, takes the form
D(ξ(t), ξ̇(t)) = φ′

d(ξ(t)) ξ̇(t). For simplicity, we consider the case where the quasi static evolution is governed
only by a time-dependent Dirichlet boundary condition u = g(t) for t ∈ [0, T ] on ∂DΩ , the Dirichlet part of
the boundary, whereas the external forces acting on the bodies and external tractions on ∂NΩ = ∂Ω \ ∂DΩ
are set equal to 0. Therefore, the equilibrium equations of the system will be “qualitatively” of the form⎧⎪⎪⎨⎪⎪⎩

div σ(t) = 0 on Ω ,
σν(t) = 0 on ∂NΩ ,
σν(t) ∈ ∂[[u]]φ([[u(t)]], ξ(t), ν) on K,
u(t) = g(t) on ∂DΩ ,

where σ = Cϵ(u) is the linear stress tensor, σν = σν is the normal tension, ∂[[u]]φ denotes the subdifferential
with respect to [[u]] (in particular [[u(t)]] · ν ≥ 0 on K). These equations will be given a rigorous and detailed
formulation in Section 5. As for the flow rule, we have to specify which kind of quasi-static evolution we
are interested in. More precisely, we look for a parametrized BV -evolution in the sense of [16]. In general,
BV -evolutions for rate-independent problems are defined by vanishing viscosity, taking the limit of rate-
dependent parabolic evolutions. In this work we follow a different approach, we endow the space of admissible
configurations with a norm ∥ · ∥ and we generate the evolutions by means of a time-discrete scheme based
on local minimizers of F (similar schemes can be found in [13,17,18]). Given the initial configuration u0, ξ0
at time t0 = 0 and given ∆ > 0, the discrete evolution is defined by induction as follows:

• if tk < T and uk is a local minimizer of F (tk, u, ξk) (in some neighbourhood ∥u − uk∥ ≤ r for r > 0)
then ⎧⎨⎩tk+1 = min{tk + c∆, T}

uk+1 = uk,
ξk+1 = ξk,

(for a suitable choice of c > 0)
• if tk ≤ T and uk is not a local minimizer then⎧⎨⎩tk+1 = tk,

uk+1 ∈ argmin{F (tk, u, ξk) : ∥u− uk∥ ≤ ∆},
ξk+1 = ξk ∨ |[[uk+1]]|.

Several comments are due. If ∥uk+1 − uk∥ < ∆ then uk+1 is a local minimizer of F (tk, ·, ξk) in a ball
B(uk+1, r), for r sufficiently smaller than ∆; on the contrary, if ∥uk+1 −uk∥ = ∆ then uk+1 is not necessarily
a local minimizer of F (tk, ·, ξk) in a ball B(uk+1, r). In particular, some indices k may not correspond to a
local minimizer of F (tk, ·, ξk). Selecting the indices ki such that uki

is a local minimizer at time tki
= ic∆
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