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h i g h l i g h t s

• We prove the existence of a unique weak solution of a thermoviscoplastic model.
• The model is fully coupled and it contains a variational inequality of second kind.
• We exploit an integrability result for nonl. elasticity and max. parabolic regularity.
• We formulate a class of opt. control problems and show existence of global minimizers.
• We show that the control-to-state operator is weakly sequentially continuous.
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a b s t r a c t

A quasistatic, thermoviscoplastic model at small strains with linear kinematic hard-
ening, von Mises yield condition and mixed boundary conditions is considered. The
existence of a unique weak solution is proved by means of a fixed-point argument,
and by employing maximal parabolic regularity theory. The weak continuity of the
solution operator is also shown. As an application, the existence of a global mini-
mizer of a class of optimal control problems is proved.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following quasistatic, thermovisco(elasto)plastic model at small strains with linear
kinematic hardening and von Mises yield condition:

stress–strain relation: σ = C

ε(u)− p − t(θ)
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conjugate forces: χ = −H p, (2)
viscoplastic flow rule: ϵ ṗ + ∂ṗD(ṗ, θ) ∋ [σ + χ] , (3)
balance of momentum: − div


σ + γ ε(u̇)


= ℓ, (4)

heat equation: ϱ cp θ̇ − div(κ∇θ) = r + γ ε(u̇) : ε(u̇) + (σ + χ) : ṗ − θt′(θ) : C(ε(u̇)− ṗ). (5)

The unknowns are the stress σ, back-stress χ, plastic strain p, displacement u and temperature θ. Further,
C and H denote the elastic and hardening moduli, respectively. ε(u) denotes the symmetrized gradient
or linearized strain associated with u. The temperature dependent term t(θ) expresses thermally induced
strains. D denotes the dissipation function. The right hand sides ℓ and r represent mechanical and thermal
volume and boundary loads, respectively. ϱ, cp and κ describe the density, specific heat capacity and thermal
conductivity of the material. The positive parameters ϵ and γ represent viscous effects in the evolution of
the plastic strain and in the balance of momentum. For the derivation of the system (1)–(5) and more on
its physical background, we refer the reader to Ottosen & Ristinmaa, [1, Chapter 22 and 23].

The analysis of thermoplastic models poses numerous mathematical challenges, mainly due to the low inte-
grability of the nonlinear terms on the right hand side of the heat equation. Several approaches have been con-
sidered in the literature to deduce the existence and uniqueness of a solution, and we mention the following.

• Chelmiński & Racke [2]: In this model without viscosity terms the dissipation function is only allowed
to depend linearly on the temperature and a simplified mechanical heat source is used which does not
account for plastic dissipation and is cut off at large temperatures. The authors use a Yosida regularization
to prove the existence of a solution.
• Bartels & Roub́ıček [3]: The model does not account for hardening and thermal strains, it contains a

hyperbolic viscous balance of momentum and a simplified right hand side of the heat equation. The
authors prove the existence of a solution in a weak sense via a discretization strategy.
• Bartels & Roub́ıček [4]: In contrast to Bartels & Roub́ıček [3] the authors take into account thermal

strains, linear kinematic and isotropic hardening and the same right hand side of the heat equation as in
(5) but they consider a temperature independent flow rule. The authors require a growth condition for
the heat capacity w.r.t. the temperature to obtain the existence of a solution in a weak sense, again via
a discretization procedure.
• Paoli & Petrov [5]: In contrast to our model the authors assume a C2 regular boundary in addition to

homogeneous boundary conditions for the displacement, which leads to better regularity. Moreover, the
dissipation function is assumed to be independent of the temperature. The authors use a growth condition
for the heat capacity w.r.t. the temperature to show the existence of a solution in a classical sense by
means of Schauder’s fixed point theorem.

Our approach is closest to the one in [5]. We emphasize that we admit more general domains and bound-
ary conditions. The overall strategy to show the existence and uniqueness of a solution is an application of
Banach’s fixed point theorem, applied to a reduced problem formulated in the temperature variable alone.
In order to apply the fixed-point argument, we make use of the theory of maximal parabolic regularity. The
same strategy was used in [6] for the analysis and optimal control of a thermistor problem. Furthermore,
we focus our discussion on the case of constant heat capacities. We mention that this case is not included
in [5] since a linear growth of the heat capacity is assumed there. In contrast to the linear dependence of the
thermal strain on the temperature in [5], we allow more general thermal strains t and only assume them to
be globally bounded w.r.t. the temperature. This can be achieved w.l.o.g. by a cut-off outside the relevant
temperature regime.

Under the assumptions made precise in Section 2, our main result is as follows. (We refer the reader to
Theorem 10 for a re-iteration of the theorem.)
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