

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

On the lower semicontinuous envelope of functionals defined on polyhedral chains

Maria Colombo, Antonio De Rosa, Andrea Marchese*, Salvatore Stuvard

Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland

ARTICLE INFO

Article history: Received 14 March 2017 Accepted 7 August 2017 Communicated by Enzo Mitidieri

MSC: 49Q15 49J45

Keywords: Rectifiable currents H-mass Polyhedral approximation Relaxation

ABSTRACT

In this note we prove an explicit formula for the lower semicontinuous envelope of some functionals defined on real polyhedral chains. More precisely, denoting by $H: \mathbb{R} \to [0, \infty)$ an even, subadditive, and lower semicontinuous function with H(0) = 0, and by Φ_H the functional induced by H on polyhedral m-chains, namely

$$\Phi_H(P) := \sum_{i=1}^N H(\theta_i) \mathcal{H}^m(\sigma_i), \quad \text{for every } P = \sum_{i=1}^N \theta_i \llbracket \sigma_i \rrbracket \in \mathbf{P}_m(\mathbb{R}^n),$$

we prove that the lower semicontinuous envelope of Φ_H coincides on rectifiable m-currents with the H-mass

$$\mathbb{M}_H(R) := \int_E H(\theta(x)) d\mathcal{H}^m(x)$$
 for every $R = \llbracket E, \tau, \theta \rrbracket \in \mathbf{R}_m(\mathbb{R}^n)$.

 \odot 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let $H: \mathbb{R} \to [0, \infty)$ be an even, subadditive, and lower semicontinuous function, with H(0) = 0. The function H naturally induces a functional Φ_H on the set of polyhedral m-chains in \mathbb{R}^n , which can be thought as the space of linear combinations of m-simplexes with real coefficients. For every polyhedral m-chain of the form $P = \sum_{i=1}^{N} \theta_i \llbracket \sigma_i \rrbracket$ (with non-overlapping m-simplexes σ_i), we set

$$\Phi_H(P) := \sum_{i=1}^N H(\theta_i) \mathcal{H}^m(\sigma_i).$$

It is easy to see that the above assumptions on H are necessary for the functional Φ_H to be (well defined and) lower semicontinuous on polyhedral chains with respect to convergence in flat norm. In this note, we

^{*} Corresponding author.

E-mail addresses: maria.colombo@math.uzh.ch (M. Colombo), antonio.derosa@math.uzh.ch (A. De Rosa), andrea.marchese@math.uzh.ch (A. Marchese), salvatore.stuvard@math.uzh.ch (S. Stuvard).

prove that they are also sufficient, and moreover we show that the lower semicontinuous envelope of Φ_H coincides on rectifiable m-currents with the H-mass, namely the functional

$$\mathbb{M}_H(R) := \int_E H(\theta(x)) d\mathcal{H}^m(x), \quad \text{for every rectifiable } m\text{-current } R = [\![E, \tau, \theta]\!].$$

The validity of such a representation has recently attracted some attention. For instance, it is clearly assumed in [17] for the choice $H(x) = |x|^{\alpha}$, with $\alpha \in (0,1)$, in order to prove some regularity properties of minimizers of problems related to branched transportation (see also [3,12,13]) and in [5] in order to define suitable approximations of the Steiner problem, with the choice $H(x) = (1 + \beta |x|) \mathbf{1}_{\mathbb{R} \setminus \{0\}}$, where $\beta > 0$ and $\mathbf{1}_A$ denotes the indicator function of the Borel set A. Our results were recently used in [4] to define and study branched minimizers with respect to the most general class of reasonable transportation costs.

We finally remark that in the last section of [15] the author sketches a strategy to prove an analogous version of the main theorem of the paper (Theorem 2.4) in the framework of flat chains with coefficients in a normed abelian group G. Motivated by the relevance of such result for real valued flat chains, the ultimate aim of our note is to present a self-contained complete proof of it when $G = \mathbb{R}$.

2. Notation and main result

If $0 \le m \le n$, then compactly supported m-dimensional currents, rectifiable m-currents, polyhedral m-chains, and flat m-chains in \mathbb{R}^n with real coefficients will be denoted $\mathscr{E}_m(\mathbb{R}^n)$, $\mathbf{R}_m(\mathbb{R}^n)$, $\mathbf{P}_m(\mathbb{R}^n)$ and $\mathbf{F}_m(\mathbb{R}^n)$, respectively. In what follows, we briefly recall the relevant definitions of the above classes of currents; for the basic definitions about currents, such as the boundary operator ∂ , the support spt, and the mass norm \mathbb{M} , we refer the reader to [14]. Let us denote by $\Lambda^m(\mathbb{R}^n)$ the vector space of m-covectors in \mathbb{R}^n . A current R is in $\mathbf{R}_m(\mathbb{R}^n)$ if its action on any differential m-form $\omega \in \mathscr{D}^m(\mathbb{R}^n) := C_c^{\infty}(\mathbb{R}^n; \Lambda^m(\mathbb{R}^n))$ can be expressed by

$$\langle R, \omega \rangle = \int_{E} \langle \omega(x), \tau(x) \rangle \, \theta(x) \, d\mathcal{H}^{m}(x),$$
 (2.1)

where $E \in \mathbb{R}^n$ is countably m-rectifiable, $\tau(x)$ is an \mathcal{H}^m -measurable, unit, simple m-vector field orienting the approximate tangent space $\mathrm{Tan}(E,x)$ at \mathcal{H}^m -a.e. $x \in E$, and $\theta \in L^1(\mathcal{H}^m \sqcup E;(0,\infty))$ is a positive-valued multiplicity. If R is given by (2.1), we will write $R = [\![E,\tau,\theta]\!]$. We remark that the rectifiable currents we are considering all have finite mass and compact support. A polyhedral chain $P \in \mathbf{P}_m(\mathbb{R}^n)$ is a rectifiable current which can be written as a linear combination

$$P = \sum_{i=1}^{N} \theta_i \llbracket \sigma_i \rrbracket, \tag{2.2}$$

where $\theta_i \in (0, \infty)$, the σ_i 's are non-overlapping, oriented, m-dimensional, convex polytopes (finite unions of m-simplexes) in \mathbb{R}^n and $\llbracket \sigma_i \rrbracket = \llbracket \sigma_i, \tau_i, 1 \rrbracket$, τ_i being a constant m-vector orienting σ_i . If $P \in \mathbf{P}_m(\mathbb{R}^n)$, then its flat norm is defined by

$$\mathbb{F}(P) := \inf \{ \mathbb{M}(S) + \mathbb{M}(P - \partial S) : S \in \mathbf{P}_{m+1}(\mathbb{R}^n) \}.$$

Flat m-chains can be therefore defined to be the \mathbb{F} -completion of $\mathbf{P}_m(\mathbb{R}^n)$ in $\mathscr{E}_m(\mathbb{R}^n)$.

We remark that for the spaces of currents considered above the following chain of inclusions holds:

$$\mathbf{P}_m(\mathbb{R}^n) \subset \mathbf{R}_m(\mathbb{R}^n) \subset \mathbf{F}_m(\mathbb{R}^n) \cap \{ T \in \mathscr{E}_m(\mathbb{R}^n) : \mathbb{M}(T) < \infty \}. \tag{2.3}$$

The flat norm \mathbb{F} extends to a functional (still denoted \mathbb{F}) on $\mathscr{E}_m(\mathbb{R}^n)$, which coincides on $\mathbf{F}_m(\mathbb{R}^n)$ with the completion of the flat norm on $\mathbf{P}_m(\mathbb{R}^n)$, by setting:

$$\mathbb{F}(T) := \inf\{\mathbb{M}(S) + \mathbb{M}(T - \partial S) : S \in \mathscr{E}_{m+1}(\mathbb{R}^n)\}.$$
(2.4)

Download English Version:

https://daneshyari.com/en/article/5024539

Download Persian Version:

https://daneshyari.com/article/5024539

Daneshyari.com