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a b s t r a c t

We study general quadratic reaction–diffusion systems with detailed balance, in
space dimension d ≤ 4. We show that close-to-equilibrium solutions (in an L2 sense)
are regular for all times, and that they relax to equilibrium exponentially in a strong
sense. That is: all detailed balance equilibria are exponentially asymptotically sta-
ble in all Lp norms, at least in dimension d ≤ 4. The results are given in detail for
the four-species reaction–diffusion system, where the involved constants can be esti-
mated explicitly. The main novelty is the regularity result and exponential relaxation
in Lp norms for p > 1, which up to our knowledge is new in dimensions 3 and 4.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Systems of reaction–diffusion equations model a wide variety of phenomena, and prominent among them is
the behaviour of reacting chemical mixtures. The mathematical theory of these systems is far from complete,
and in particular the existence of global regular solutions is unknown in many important cases. If we consider
I ≥ 2 species, denoted A1, . . . , AI , undergoing a number R ≥ 1 of different reactions

αr1A1 + · · ·+ αrNAI
krf


kr
b

βr1A1 + · · ·+ βrNAI , r = 1, . . . , R,

then the equation satisfied by the concentrations ai = ai(t, x) of the Ai is

∂tai = di∆ai −Ri(a), i = 1, . . . , I, (1)
∇xai(t, x) · ν(x) = 0, t > 0, x ∈ ∂Ω , i = 1, . . . , I. (2)

The positive numbers krf and krb , for r = 1 . . . , R, denote the forward and backward reaction rates,
respectively, for each of the R reactions. The vectors αr = (αr1, . . . , αrI) and βr = (βr1 , . . . , βrI ) are the
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stoichiometric coefficients which specify the number of particles of each species that take part in each
reaction, and the reaction term Ri(a) depends on a = (ai)i=1,...,I and is obtained from the law of mass
action. Complete details on this setting are given in Section 6, and for the moment we omit them for brevity.
A very interesting basic model that presents the main difficulties is the following, sometimes called the four
species model: consider a set of four chemical substances A1, A2, A3, A4 which undergo the reactions

A1 +A3
k1


k2
A2 +A4 (3)

at positive rates k1, k2 as marked. We assume these substances are confined to a domain Ω ⊆ Rd (a
connected, bounded, open region with smooth boundary — at least C2+α with α > 0), and we denote the
concentration of Ai by ai = ai(t, x), depending on time t ≥ 0 and space x ∈ Ω . Except in Section 6,
it is understood that the index i always ranges from 1 to 4. If these substances also diffuse in a domain
with diffusion constant di corresponding to Ai then the following system models the time evolution of the
concentrations ai:

∂ta1 = d1∆a1 − k1a1a3 + k2a2a4,

∂ta2 = d2∆a2 + k1a1a3 − k2a2a4,

∂ta3 = d3∆a3 − k1a1a3 + k2a2a4,

∂ta4 = d4∆a4 + k1a1a3 − k2a2a4,

 t > 0, x ∈ Ω . (4)

We always assume that all di are strictly positive. We also assume no-flux boundary conditions which ensure
that the total mass is conserved:

∇xai(t, x) · ν(x) = 0, t > 0, x ∈ ∂Ω , i = 1, . . . , 4, (5)

where ν(x) denotes the outer normal to the boundary of Ω at point x. The system (4) is quadratic in
the nonlinearities and satisfies the detailed balance condition: there is a space-homogeneous equilibrium
(ai,∞)i=1,...,4 which makes each of the reactions balanced, that is, it satisfies

k1a1,∞a3,∞ = k2a2,∞a4,∞.

Since in this case there is only one reaction, it is obvious that all space-homogeneous equilibria must satisfy
this. In general, when detailed balance holds one can show that all equilibria must be space-homogeneous
and satisfy the same condition.

The existence of solutions and asymptotic behaviour of the system (4)–(5) and in general (1)–(2) have
been studied in a number of works, and several previous results in reaction–diffusion systems apply to it. In
general, difficulties increase with the strength of the nonlinearities and the space dimension. It is known that
weak solutions to (4)–(5) in L2([0, T ) × Ω) exist in all dimensions and for all T > 0, and in general weak
L2 solutions to (1)–(2) exist as long as the system is at most quadratic and satisfies the detailed balance
condition [8]. In this paper we always work with this concept of solution. A general theory of renormalised
solutions for entropy-dissipating systems that does not have the restriction of the system being quadratic
has recently been developed in Fischer [15]. Classical solutions are more elusive: they exist for a short time
thanks to general theory of parabolic equations [1], and global-in-time classical solutions are relatively well
understood in a few cases. For the system (4)–(5) the current situation is the following:

1. Global regular solutions are known to exist in space dimension d ≤ 2 [5,7,19,3].
2. Global regular solutions also exist in any space dimension whenever the nonlinearities are of degree <2

[4]. Notice that this does not apply to system (4), which has quadratic nonlinearities.
3. Regular solutions are also understood in any space dimension when diffusion coefficients are not too

far from each other [3,12,11]. They are also understood if the diffusion coefficients satisfy d1 = d2 and
d3 = d4 [18,16].
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