ARTICLE IN PRESS

Nonlinear Analysis 🛛 (

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Reaction–diffusion systems of Maxwell–Stefan type with reversible mass-action kinetics

Martin Herberg^a, Martin Meyries^a, Jan Prüss^a, Mathias Wilke^{b,*}

^a Martin-Luther-University Halle-Wittenberg, Institute of Mathematics, Germany ^b University of Regensburg, Faculty of Mathematics, Germany

ARTICLE INFO

Article history: Received 21 March 2016 Accepted 29 July 2016 Communicated by S. Carl

MSC: primary 35R35 secondary 35Q30 76D45 76T10

 $\label{eq:keywords:} \begin{array}{l} \mbox{Maxwell-Stefan diffusion} \\ \mbox{Reversible mass-action kinetics} \\ \mbox{Maximal L_p-regularity} \end{array}$

1. Introduction

ABSTRACT

The mass-based Maxwell–Stefan approach to one-phase multicomponent reactive mixtures is mathematically analyzed. It is shown that the resulting quasilinear, strongly coupled reaction–diffusion system is locally well-posed in an L_p -setting and generates a local semiflow on its natural state space. Solutions regularize instantly and become strictly positive if their initial components are all nonnegative and nontrivial. For a class of reversible mass-action kinetics, the positive equilibria are identified: these are precisely the constant chemical equilibria of the system, which may form a manifold. Here the total free energy of the system is employed which serves as a Lyapunov function for the system. By the generalized principle of linearized stability, positive equilibria are proved to be normally stable.

 \odot 2016 Elsevier Ltd. All rights reserved.

1.1. Reaction-diffusion systems of Maxwell-Stefan type

The Maxwell–Stefan approach modeling diffusion in multicomponent mixtures is well-known in the engineering literature, cf. [7,12,13,21,25]. In the mathematical community the resulting reaction–diffusion equations seem much less known, but have recently attracted a lot of attention, see [1,3,9]. Therefore, we begin with a review of the basic ideas of this approach.

Let $\Omega \subset \mathbb{R}^n$ be an open bounded domain with boundary $\partial \Omega$ of class $C^{2+\alpha}$ and outer normal field ν . We consider a mixture of $N \geq 2$ species A_k with molar masses $M_k > 0$ and individual mass densities $\rho_k \geq 0$ filling the container Ω . Mass balance of the single component A_k reads

$$\partial_t \rho_k + \operatorname{div}_x(\rho_k \mathbf{u}_k) = M_k r_k \quad \text{in } \Omega, \ t > 0,$$

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.na.2016.07.010} 0362-546 X @ 2016 Elsevier Ltd. All rights reserved.$

 $Please \ cite \ this \ article \ in \ press \ as: \ M. \ Herberg, \ et \ al., \ Reaction-diffusion \ systems \ of \ Maxwell-Stefan \ type \ with \ reversible \ mass-action \ kinetics, \ Nonlinear \ Analysis \ (2016), \ http://dx.doi.org/10.1016/j.na.2016.07.010$

E-mail addresses: jan.pruess@mathematik.uni-halle.de (J. Prüss), mathias.wilke@ur.de (M. Wilke).

2

ARTICLE IN PRESS

where \mathbf{u}_k denotes the *individual velocity* of species A_k , satisfying $(\mathbf{u}_k|\nu) = 0$ on $\partial\Omega$, and r_k is the rate of production of species A_k due to chemical reactions. Observe that the kinetics r should be *positivity* preserving, i.e., subject to the condition

$$\rho_j \ge 0, \quad \rho_k = 0 \quad \Rightarrow \quad r_k \ge 0,$$

and should satisfy $\sum_{k} M_{k}r_{k} = 0$, which results in conservation of total mass. The quantities of interest are the mass densities ρ_{k} , while the individual velocities \mathbf{u}_{k} are in general unknown and have to be modeled, as well as the kinetics r_{k} . To reduce the complexity of these balance laws, we introduce the total density $\rho = \sum_{k} \rho_{k}$, the barycentric velocity $\mathbf{u} = \sum_{k} \rho_{k} \mathbf{u}_{k} / \rho$, the mass fractions $y_{k} = \rho_{k} / \rho$, and the concentrations $c_{k} = \rho_{k} / M_{k} = y_{k} \rho / M_{k}$. With these new variables, we obtain the overall mass balance

$$\partial_t \rho + \operatorname{div}_x(\rho \mathbf{u}) = 0 \quad \text{in } \Omega, \ t > 0.$$

and $(\mathbf{u}|\nu) = 0$ on $\partial \Omega$. The individual mass balances now become

$$\rho(\partial_t y_k + \mathbf{u} \cdot \nabla_x y_k) + \operatorname{div}_x J_k = M_k r_k \quad \text{in } \Omega, \ t > 0$$

where the *diffusive fluxes* J_k are given by

$$J_k = \rho_k(\mathbf{u}_k - \mathbf{u}), \quad k = 1, \dots, N.$$

Note that, by definition, $\sum_k y_k = 1$ and $\sum_k J_k = 0$.

So far everything is physically exact in the framework of continuum mechanics. However, to obtain a closed model one has to prescribe laws for \mathbf{u} , r_k , and most importantly for the diffusive fluxes J_k . In this paper, we are interested in the *incompressible*, *isobaric*, *isothermal case*, which means

$$\rho = const, \qquad \mathbf{u} = 0$$

and no temperature dependence. We note that most of the engineering literature, as well as the papers [1,9], is molar-based, i.e., instead of the total mass ρ the total molar concentration $c_{\text{tot}} = \sum_k c_k$ is assumed be constant and the molar averaged velocity $\mathbf{v} = \frac{1}{c_{\text{tot}}} \sum_k c_k \mathbf{u}_k$ vanishes. However, adding up the individual mass balances, this leads to $\sum_k r_k = 0$, which is only satisfied in special situations. Hence, also having in mind the more general case of nontrivial velocity field and temperature, we prefer the mass-based ansatz $\rho = const$.

The above assumptions lead to the problem

$$\rho \partial_t y_k + \operatorname{div}_x J_k = M_k r_k(y) \quad \text{in } \Omega, \qquad (J_k | \nu) = 0 \quad \text{on } \partial \Omega, \tag{1.1}$$

for k = 1, ..., N, completed by initial data $y_k(0) = y_0^k \ge 0$. We again emphasize the constraints

$$\sum_{k=1}^{N} J_k = 0, \qquad \sum_{k=1}^{N} y_k = 1.$$
(1.2)

Together with $y \ge 0$ this already implies L_{∞} -bounds for y, a very important property. Therefore, when modeling the diffusive fluxes it is essential that positivity as well as conservation of mass are ensured.

A classical approach to model the diffusive fluxes J_k is now as follows. One of the species, say A_N , acts as a solvent for the mixture, say water, or tuluol, benzol, etc. This means that y_N is close to 1 and the remaining y_k are small, hence the A_k are dilute for $k \neq N$. As A_N will in general not be involved in the reactions, the equation for y_N is ignored and the remaining diffusive fluxes are modeled by *Fick's law*, i.e. $J_k = -d_k \nabla_x y_k$, $k = 1, \ldots, N-1$, where $d_k > 0$. This way (1.1) becomes a semilinear reaction-diffusion system with diagonal main part which preserves nonnegativity of y_1, \ldots, y_{N-1} . However, now (1.2) forces an unrealistic diffusive flux J_N for y_N , such that nonnegativity and a priori L_∞ -bounds for the mass fractions might get lost. This might be one reason for the notorious problem of global existence in the Fickian approach, see [16,22]. Download English Version:

https://daneshyari.com/en/article/5024590

Download Persian Version:

https://daneshyari.com/article/5024590

Daneshyari.com