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a b s t r a c t

A mathematical model is proposed where the classical Maxwell–Stefan diffusion
model for gas mixtures is coupled to an advection-type equation for the temperature
of the physical system. This coupled system is derived from first principles in the
sense that the starting point of our analysis is a system of Boltzmann equations
for gaseous mixtures. We perform an asymptotic analysis on the Boltzmann model
under diffuse scaling to arrive at the proposed coupled system.
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1. Introduction

The Maxwell–Stefan theory [23,27] has been the most successful approach for describing diffusive
phenomena in gaseous mixtures, and it is now the reference model for studying multicomponent diffusion.
The Maxwell–Stefan system is a coupled system of cross-diffusion equations and it is commonly used in
many scientific fields, for e.g., in engineering [22] and in medical sciences [7,28].

Despite its current utility, the mathematical studies on the subject are however quite recent (see
[17,15,16,18]). In particular, existence and uniqueness issues, as well as the long-time behaviour, have been
considered in [6,10,21,13], whereas [24] deals with the numerical study of the Maxwell–Stefan equations.

In [11], the authors provide the formal derivation of the Maxwell–Stefan diffusion equations starting from
the non-reactive elastic Boltzmann system for monatomic gaseous mixtures [12,14,9]. They show that the
zeroth and first order moments of appropriate solutions of the Boltzmann system, in the diffusive scaling and
for vanishing Mach and Knudsen numbers limit, formally converge to the solution of the Maxwell–Stefan
equations. This result, which lies in the research line introduced by Bardos, Golse and Levermore in [1–3],
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has been obtained in the framework of Maxwellian cross sections. Subsequently, the approach of [11] has
been generalized in [8], where the Maxwell–Stefan diffusion coefficients have been written in terms of explicit
formulas with respect to the cross-sections, and in [20] where the explicit dependence of the Maxwell–Stefan
binary diffusion coefficients with respect to the temperature of the mixture has been obtained for general
analytical cross sections satisfying Grad’s cutoff assumption [19].

All the previous results have been obtained in the isothermal case. However, as pointed out by Krishna
and Wesselingh, “perfectly isothermal systems are rare in chemical engineering practice and many processes
such as distillation, absorption, condensation, evaporation and drying involve the simultaneous transfer of
mass and energy across phase interfaces” [22, p.876].

For this reason, it is natural to extend the strategy of [11] to the non-isothermal case, and this is the
purpose of the present article: we provide here the asymptotics of the Boltzmann system for monatomic
mixtures that leads to a non-isothermal form of the Maxwell–Stefan equations, and thus we can take into
account the thermal diffusion contribution to the molar fluxes (thermophoresis). We postulate that the
solution of the Boltzmann system keeps the structure of a local Maxwellian and then we deduce, in the
standard diffusive limit, the coupled relationships satisfied by the densities, the fluxes and the temperature
at the macroscopic level which guarantee that the local Maxwellian structure is preserved by the time
evolution of the system.

A major question is posed by the closure relationship. Indeed, as in the case of the Maxwell–Stefan
system, the resulting equations for the densities, the fluxes and the temperature are, in the diffusive limit,
linearly dependent and an additional equation between the unknowns is necessary in order to close it. As it
is well known, in the isothermal Maxwell–Stefan system, the closure relationship consists in supposing that
the sum of all molar fluxes Ji is locally identically zero. This supplementary equation could be incompatible
with some experimental behaviours in the non-isothermal setting: as pointed out in [22], indeed, in chemical
vapour deposition (CVD) processes, thermal diffusion causes large, heavy gas molecules (for e.g., WF6) to
concentrate in cold regions whereas small, light molecules (such as H2) to concentrate in hot regions. Hence,
non-isothermal systems could require new closure relationships which, of course, relax to the isothermal one
when the temperature is uniform in time and constant in space.

The closure relation that we suggest is the following: sum of the molar fluxes Ji is locally proportional to
the gradient of the total molar concentration, i.e.,

n
i=1

Ji = −α∇ctot.

With respect to the above mentioned closure relation, we characterize the total molar concentration ctot
and the temperature field T (t, x) as solutions to a coupled system of evolution equations. Furthermore, the
temperature-dependent flux-gradient relations derived in this paper – see second line of (24) – implies that
the product ctotT is space-independent. Hence the above mentioned closure relation postulated in this paper
recovers the standard closure relation – sum of the molar fluxes Ji being locally identically zero – in the
isothermal case.

The outline of the paper is as follows: In Section 2.1, we introduce the kinetic model – system of
Boltzmann equations for gas mixtures – and present the assumptions made on the Boltzmann collision
kernels (Maxwellian molecules). Section 2.2 deals with the scaling considered in this work and the main
assumption made on the solutions to the scaled mesoscopic kinetic model. In Section 2.3 we derive the
balance laws (mass, momentum and energy) — see Proposition 1. Emphasis is given on computing the
coefficients in the balance laws — given in terms of the velocity averages of certain statistical quantities.
A formal asymptotic analysis (in the mean free path going to zero limit) is performed in Section 2.4 which
culminates in Theorem 2. Section 2.5 deals with the closure relation. Finally, in Section 2.6, we derive some
qualitative properties on the total concentration ctot(t, x) and the temperature field T (t, x).



Download English Version:

https://daneshyari.com/en/article/5024591

Download Persian Version:

https://daneshyari.com/article/5024591

Daneshyari.com

https://daneshyari.com/en/article/5024591
https://daneshyari.com/article/5024591
https://daneshyari.com

