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1. Introduction

Let .Z be the class of all continua K contained in R?, endowed with the Hausdorff distance. A classical
result due to S. Golab (see [8, Section 3|, or [6, Theorem 3.18]) states that the length, that is, the function
K +— #'(K), is lower semicontinuous on .%. Variants of this semicontinuity result, together with well-
known compactness properties of %, play a key role in the proofs of several existence results in the Calculus
of Variations, from optimal networks [9] to image segmentation [2] and quasi-static evolution of fractures [3].
In particular, Golab’s theorem has been extended to general metric spaces in [1, Theorem 4.4.17], and
[9, Theorem 3.3].”

* Corresponding author.
E-mail addresses: giovanni.albertiQunipi.it (G. Alberti), martino.ottolini@sns.it (M. Ottolini).

1 As usual, a continuum is a connected compact metric space (or subset of a metric space), and length stands for the one-
dimensional Hausdorff measure ¢,

2 The proof in [1] is actually incomplete; the missing steps were given in [9].
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It should be noted that none of the proofs of Golab’s theorem mentioned above is completely elementary.
On the other hand, the counterpart of this result for paths, namely that the length of a path v : [0,1] — X
is lower semicontinuous with respect to the pointwise convergence of paths, is elementary and almost trivial.
This sharp contrast is due to the fact that the definitions of length of a path and of one-dimensional
Hausdorff measure of a set are utterly different, even though they aim to describe (essentially) the same
geometric quantity. More precisely, the length of a path, being defined as a supremum of finite sums which
are clearly continuous, is naturally lower semicontinuous, while the definition of Hausdorff measure is based
on Caratheodory’s construction, and is designed to achieve o-subadditivity, not semicontinuity.

In this note we point out a couple of relations/similarities between the one-dimensional Hausdorff measure
of continua and the length, which we then use to give two independent (and relatively elementary) proofs
of Golab’s theorem. We think, however, that these results are interesting in their own right.

Firstly, in Theorem 2.5 we show that for every continuum X there holds

HHX) = sup{zi: diam(Ei)},

where the supremum is taken over all finite families {E;} of disjoint connected subsets of X. (Note the
resemblance with the definition of length of a path.)

Secondly, in Theorem 4.4 we show that every continuum X with finite length admits a sort of canonical
parametrization; more precisely, there exists a path v : I — X with length equal 2.571(X) which “goes
through almost every point of X twice, once moving in a direction, and once moving in the opposite
direction”, the precise statement requires some technical definitions and is postponed to Section 4.

This paper is organized as follows: Sections 2 and 4 contain the two results mentioned above (Theorems 2.5
and 4.4) and the corresponding proofs of Golab’s theorem. Section 3 contains a review of some basic facts
about paths with finite length in a metric space which are used in Section 4, and can be skipped by the
expert reader. This review is self-contained and limited in scope; a more detailed presentation of the theory
of paths with finite length in metric spaces can be found in [1, Chapter 4], while continua with finite length
have been studied in detail in [4] (see also [7]).

Since the results described in this paper are rather elementary (in particular Theorem 2.5), we strove
to keep the exposition self-contained, and avoid in particular the use of advanced results from Geometric
Measure Theory. On the other hand, proofs are sometimes just sketched, with all steps clearly indicated but
many details left to the reader.

2. A characterization of length

The main results in this section are the characterizations of the length of sets with countably many
connected components (and in particular of continua) given in Theorem 2.5 and Proposition 2.8. Using the
former result we give our first proof of Golab’s theorem (Theorem 2.9).

2.1. Notation. Through this paper X is a metric space endowed with the distance d. Given x € X and
E, E’ subsets of X we set:

B(z,r) closed ball with center x and radius r > 0;
diam(F) diameter of E, i.e., sup{d(x,2’) : x,2’ € E};
dist(z, F) distance between z and FE, i.e., inf{d(z,2’) : 2’ € E};
dist(E, E') distance between E and F’, i.e., inf{d(z,2') : 2 € E, 2’ € E'};
dy(E, E") Hausdorff distance between E and E’, i.e., the minimum of all » > 0 such that dist(z, E') < r
for every x € FE and dist(z/, F) < r for every 2’ € E’;
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