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a b s t r a c t

We consider an electrically charged fluid occupying a solid cylindrical region Ω of
R3. Outside the domain Ω there is an electric field with electric potential which
solves the Laplace equation and diverges as the distance from the axis tends to
infinity. At ∂Ω the potential is constant and there is a balance between the pressure
difference inside and outside the fluid, capillary forces proportional to the mean
curvature and electrostatic repulsion of charges. We are interested in showing the
existence of domains different from the solid cylinder Ω and satisfying the conditions
described above. This problem is equivalent to an overdetermined elliptic boundary
value problem on an exterior domain. We show the bifurcation phenomenon occurs
and produces the deformation of the solid cylinder into rippled cylinders.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the work [4] the authors studied the existence of deformations of a spherical drop of an electrically
charged fluid. Since the fluid is supposed to be conducting then the electric charge Q distributes uniformly
on the surface of the drop.

If R0 denotes the radius of the drop, H is the mean curvature of its boundary, ε0 is the dielectric constant,
then in spherical coordinates, the potential V generated by the electric charge is the solution to

∆V = 0 in R3 \ Ω ,
V = V0 on ∂Ω ,

lim
r→+∞

V (r) = 0.
(1)
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Furthermore δp = γH − ε0
2

∂V
∂n

2 must hold on ∂Ω , that is there is a balance between the pressure
difference δp inside and outside the drop, capillary forces (proportional to the mean curvature) and
electrostatic repulsion of charges (related to the normal component of the electric field, that is ∂V∂n ). γ
denotes the surface tension constant.

The authors show the existence of symmetry breaking bifurcations by which the drop becomes non-
spherical for a certain limiting value of the surface tension coefficient γ. Precisely the drop becomes unstable
and its shape changes when the parameter

X := Q2

32γπ2ε0R3
0
,

is larger than a critical value Xc. Furthermore they show there exist infinitely many bifurcation branches
of stationary non-spherical drops crossing, at certain values of X = Xl, with l > 2, the branch of spherical
drops; here Xc = X2 < X3 < · · · . The branch corresponding to the critical value X2 consists in drops whose
shape is a spheroid.

This is done studying an overdetermined boundary value problem on the complement of a perturbed solid
ball in R3.

The interest in the shape of electrified drops dates back to Lord Rayleigh, who showed in [7] that if the
electric charge is larger than some critical value, then a spherical drop becomes unstable, and after a finite
time disintegrates into droplets of smaller size. The first experimental observation of the whole evolution
process of a levitating charged drop whose radius decreases with time (by evaporation of the fluid) was
described in [2]. Once the critical value of X is reached and the drop is destabilized, the drop becomes a
prolate spheroid and, after a short time, develops conical tips from which two thin fluid jets are ejected.
Later the jets disintegrate into smaller drops. In [1] the authors study the process of formation of conical
tips for isolated charged drops. By means of a numerical calculation and asymptotic analysis, they find that
droplets with Rayleigh’s critical charge evolve into fusiform shapes with cones at the tips and the curvature
and the velocity of the fluid at the tips diverge as (t0− t)β , where β is approximately − 1

2 and t0 is the time
at which the cones are formed.

In view of these discoveries it is interesting to study also charged fluid jets. For a recent survey about
physics of fluid jets, see [3]. A description of the phenomena which occur when a fluid jet contains electric
charges appears in Section 3.9 of [3].

It is known that cylindrical fluid jets are unstable with respect to small surface perturbations because
of the development of Rayleigh instability [7] caused by capillary effects. For electrically charged fluid
jets, electrostatic forces are an additional factor which determines the shape of the jet. The stability of
uniformly charged fluid jets has been studied in [5]. The authors show that for the cylindrical geometry the
Coulomb force has a stabilizing effect for axisymmetric sinusoidal perturbations with long wavelength and
a destabilizing effect for non-axisymmetric perturbations. In [8] the authors find a wide class of equilibrium
configurations of electrically charged fluid jets. These configurations correspond to the finite amplitude
azimuthal deformations of the surface of the cylindrical jet.

In this work we consider a simple model: an electrically conducting fluid occupying a solid cylindrical
region Ω of R3 of radius R0. We assume that the fluid is electrically charged. The repulsion between the
charges tends to push the surface ∂Ω outwards, therefore counteracting the cohesive action of capillarity.
Since the fluid is conducting, then the electric charges are confined to the surface of the cylinder. By using
the equation ∇ · E = ρv/ε0, where ρv denotes the charge volume density and E denotes the electric field,
we get that E = 0 inside the cylinder because there is no electric charge in the liquid bulk. In R3 \ Ω there
is a radial electric field

E = σ0R0

ε0r
e⃗r,
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