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a b s t r a c t

We consider a critical point u0 of a functional f ∈ C1(H,R), where H is a real
Hilbert space, and formulate criteria ensuring that u0 lies in a potential well of f
without supposing that f ′ is Fréchet differentiable at u0. The derivative is required
to be Gâteaux differentiable at u0, but positive definiteness of f ′′(u0) does not even
ensure that f has a local minimum at u0 when f ′ is not Fréchet differentiable at u0.
This issue is also discussed in the context of the energy functional for a parameter
dependent nonlinear eigenvalue problem and then for a particular case involving a
degenerate elliptic Dirichlet problem on a bounded domain in RN .

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper (H, ⟨·, ·⟩, ∥ · ∥) is a real Hilbert space and the objective is to formulate conditions
ensuring that a critical point, u0, of a functional f ∈ C1(H,R) lies in a quadratic potential well. That is,
there exist ξ > 0 and r > 0 such that

f(u) ≥ f(u0) + ξ∥u− u0∥2 when ∥u− u0∥ < r.

If f ∈ C2(H), this occurs when f ′′(u0) is positive definite. Here we deal with situations where f does have
a second derivative at u0 in the sense of Gâteaux but not necessarily in the sense of Fréchet. In cases where
f ′ is not Fréchet differentiable at u0, positive definiteness of the second derivative does not even ensure that
u0 is a local minimum of f . Additional conditions are formulated which imply that u0 lies in a quadratic
potential well. The existence of a potential well rather than simply a local minimum has advantages in several
situations. For example, it is a crucial requirement in establishing the stability of a stationary solution of a
dynamical system in infinite dimensions using a Lyapunov function. (See Section 6.6 of [10], Section 4 of [2,9]
for a discussion of this issue in the context of nonlinear elasticity.) Although the existence of a potential well,
or even a local minimum, is not a prerequisite for what is often referred to as the mountain pass geometry
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in critical point theory, it is nonetheless a very convenient and commonly used starting point. (See Section
8.1 of [1] and Chapter 5 of [3].)

To present the results more precisely the following more or less standard terminology is adopted. For
u0 ∈ H and δ > 0,

B(u0, δ) = {u ∈ H : ∥u− u0∥ < δ} and S(δ) = {u ∈ H : ∥u∥ = δ}.

Consider f ∈ C1(H,R) with gradient ∇f : H → H defined by f ′(u)v = ⟨∇f(u), v⟩ for all u, v ∈ H. To
study the nature of a critical point of f , suppose without loss of generality that f(0) = 0 and f ′(0) = 0. We
have chosen to place our discussion in the context of a C1 functional f since this is a minimal requirement
for the methods used. However, it should be borne in mind that if f has one of the properties listed below
and g is a functional such that g(0) = f(0) and g(u) ≥ f(u) in some open neighbourhood of 0, then g has
the same property. This places no restriction on the regularity of g.

The functional f has a local minimum at the critical point u0 = 0 if there exists some δ > 0 such that
f(u) ≥ 0 for all u ∈ B(0, δ). It is strict if f(u) > 0 when 0 < ∥u∥ < δ. The point 0 lies in a potential well of
f if there exists δ > 0 such that m(r) > 0 for all r ∈ (0, δ) where m(r) = inf{f(u) : u ∈ S(r)}. The content
of these definitions is clarified in a short Appendix.

A potential well is said to be quadratic if lim infr→0
m(r)
r2 > 0. Clearly 0 lies in a quadratic potential well

of f if and only if there exist δ > 0 and ξ > 0 such that f(u) ≥ ξ∥u∥2 for all u ∈ B(0, δ). As is shown in the
elementary Proposition 2.1, if ∇f : H → H is Fréchet differentiable at 0 with a self-adjoint derivative, 0 lies
in a quadratic potential well of f if and only if f ′′(0) is positive definite. However, if ∇f is only Gâteaux
differentiable, or even Hadamard differentiable, at 0, positive definiteness of f ′′(0) does not even ensure that
f has a local minimum at 0. See Section 2.1 for a simple example having this property and Corollary 4.2
for a more substantial one concerning a nonlinear Dirichlet problem. Theorems 2.2 and 2.3 give sufficient
conditions for the existence of a quadratic potential well at 0 when ∇f is Hadamard differentiable at 0,
without requiring Fréchet differentiability of ∇f at 0 when dim H = ∞. Let us now describe the contents
of this paper in little more detail.

In Section 2 we deal with the case where∇f : H → H is at least Gâteaux differentiable at the critical point
u0 = 0 with a self-adjoint derivative, T . After some elementary observations based on the Taylor expansion
have been collected in Proposition 2.1, the main results of Section 2 are Theorems 2.2 and 2.3 in which ∇f
is required to be Hadamard differentiable at 0. It must be acknowledged at the outset that these results can
improve the conditions given in Proposition 2.1 only in cases where dim H = ∞ and inf σ(T ) < inf σe(T ),
where σ(T ) and σe(T ) denote the spectrum and essential spectrum of T , respectively. In Theorem 2.2, f is
also required to be the sum of a concave functional and a C2− functional. No such decomposition is assumed
in Theorem 2.3 but instead ∇f should be Lipschitz continuous on a neighbourhood of 0. In Section 2.1 a
simple example in the space H = L2(0, 1) is considered. It shows that, in the context of these theorems,
positive definiteness of f ′′(0) does not imply that f has a local minimum at 0. Furthermore, the example
shows that the additional restrictions, (2.11) in Theorem 2.2 and (2.16) in Theorem 2.3, are sharp in some
cases where the more elementary criteria from Proposition 2.1 are not.

Energy functionals play an important role in the study of many nonlinear eigenvalue problems. Then the
functional depends on a real parameter, λ, and the situation where fλ(0) = 0 and f ′λ(0) = 0 for all λ is often
encountered. The nature of the critical point u0 = 0 will now depend upon the location of λ. Section 3 is
devoted to a problem of this type in a setting which is frequently used to discuss boundary value problems
for elliptic partial differential equations. An example of a problem where the energy functional is of class
C1 but the gradient is not Fréchet differentiable at the critical point is presented in Section 4. It concerns
a degenerate elliptic Dirichlet problem such as

−∇ · {|x|2∇u}+ V (x)u+ g(x, u) = λu for x ∈ Ω
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