

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Norm inflation for the generalized Boussinesq and Kawahara equations

Mamoru Okamoto

Division of Mathematics and Physics, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano City 380-8553, Japan

ARTICLE INFO

Article history: Received 27 July 2016 Accepted 20 March 2017 Communicated by Enzo Mitidieri

MSC: 35Q55 35B30

Keywords:
Boussinesq equation
Kawahara equation
Ill-posedness
Norm inflation
General initial data

ABSTRACT

We consider ill-posedness of the Cauchy problem for the generalized Boussinesq and Kawahara equations. We prove norm inflation with general initial data, an improvement over the ill-posedness results by Geba et al. (2014) for the generalized Boussinesq equations and by Kato (2011) for the Kawahara equation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the Cauchy problem for the generalized Boussinesq equation

$$\partial_t^2 u - \Delta u + \Delta^2 u + \Delta(N(u)) = 0,
 u(0, x) = u_0(x), \qquad \partial_t u(0, x) = u_1(x)$$
(1)

where $u = u(t, x) : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ is an unknown function, and u_0 and u_1 are given functions. Falk et al. [7] derived this equation for d = 1 with $N(u) = 4u^3 - 6u^5$ in a study of shape-memory alloys. For $N(u) = u^2$, this is the "good" Boussinesq equation, which arises as a model for nonlinear strings [27].

In the sequel, we consider (1) with $N(u) = u^p$. If we ignore Δu , (1) is invariant under the scaling transformation $u \mapsto \lambda^{\frac{2}{p-1}} u(\lambda^2 t, \lambda x)$. From

$$||u_{\lambda}(0,\cdot)||_{\dot{H}^s} = \lambda^{s-\frac{d}{2} + \frac{2}{p-1}} ||u_0||_{\dot{H}^s},$$

E-mail address: m_okamoto@shinshu-u.ac.jp.

we call the index $s_c := \frac{d}{2} - \frac{2}{p-1}$ scaling-critical, although the generalized Boussinesq equation does not have the exact scaling invariance.

Well-posedness of (1) has been studied intensively for d=1 (see [2,19,8,9,18,17] and references therein). Farah [8] proved that (1) with d=1 and $N(u)=u^p$ is well-posed in $H^s(\mathbb{R})\times H^{s-2}(\mathbb{R})$ if d=1, p>1, and $s\geq \max(s_c,0)$. Kishimoto [17] showed that (1) with d=1 and $N(u)=u^2$ is well-posed in $H^s(\mathbb{R})\times H^{s-2}(\mathbb{R})$ if $s\geq -\frac{1}{2}$. He also proved that this result is sharp in the sense that the flow map $(u_0,u_1)\in H^s(\mathbb{R})\times H^{s-2}(\mathbb{R})\mapsto u(t)\in H^s(\mathbb{R})$ of (1) fails to be continuous at zero if $s<-\frac{1}{2}$.

Geba et al. [10] proved that the flow map $(u_0, u_1) \in H^s(\mathbb{R}) \times H^{s-2}(\mathbb{R}) \mapsto u(t) \in H^s(\mathbb{R})$ of (1) fails to be p-times differentiable at zero if

$$s < \begin{cases} -\frac{2}{p}, & \text{for } p \text{ odd,} \\ -\frac{1}{p}, & \text{for } p \text{ even.} \end{cases}$$

It is known that the flow map is smooth if we obtain well-posedness through an iteration argument [1]. Hence, they showed that the standard iteration argument fails to work for (1). However, as well-posedness involves the continuity of the flow map, there is a gap between ill-posedness and the presence of an irregular flow map. In this paper, we prove ill-posedness of (1) by observing norm inflation.

Theorem 1.1. Let $d \in \mathbb{N}$, $p \in \mathbb{Z}_{\geq 2}$, and $N(u) = u^p$. Assume that one of the following holds:

- $d = 1, p = 3, s \le -\frac{1}{2}$.
- $d \in \mathbb{N}, p = 2, s < -\frac{1}{2}$.
- $d \in \mathbb{N}, p \geq 3, s < \min(s_c, 0)$.

For any $(u_0, u_1) \in H^s(\mathbb{R}^d) \times H^{s-2}(\mathbb{R}^d)$, and any $\varepsilon > 0$, there exists a solution u_{ε} to (1) and $t_{\varepsilon} \in (0, \varepsilon)$ such that

$$||u_{\varepsilon}(0) - u_0||_{H^s} + ||\partial_t u_{\varepsilon}(0) - u_1||_{H^{s-2}} < \varepsilon, \quad ||u_{\varepsilon}(t_{\varepsilon})||_{H^s} > \varepsilon^{-1}.$$

In particular, the flow map of (1) is discontinuous everywhere in $H^s(\mathbb{R}^d) \times H^{s-2}(\mathbb{R}^d)$.

Theorem 1.1 is an improvement of the result by Geba et al. in terms of the property of the flow map and the range of s.

We set $v := u - i(1 - \Delta)^{-1}\partial_t u$. Since u is real valued, (1) is equivalent to

$$i\partial_t v - \Delta v = -\frac{1}{2}(v - \overline{v}) + \frac{1}{2^p}\omega(\sqrt{-\Delta})(v + \overline{v})^p,$$

$$v(0, x) = v_0(x),$$
(2)

where $\omega(\xi) = \frac{|\xi|^2}{1+|\xi|^2}$ and $v_0 = u_0 - i(1-\Delta)^{-1}u_1$. The restriction to real-valued functions is not essential, but assumed here for simplicity. When u is complex-valued, (1) is reduced to a system of nonlinear Schrödinger equations, and the same ill-posedness result holds (see Remark 3.1).

Since $\omega(-\sqrt{\Delta})$ is bounded in $L^2(\mathbb{R}^d)$, we can neglect it and reduce (2) to the Schrödinger equation with the power type nonlinearity. Hence, the same calculation as the nonlinear Schrödinger equation yields well-posedness of (1). In contrast, from $\omega(\xi) \sim |\xi|$ for $|\xi| < 1$, (1) with d = 1 and p = 2 is well-posed in $H^{-\frac{1}{2}}(\mathbb{R})$, although Kishimoto and Tsugawa [18] proved that well-posedness in $H^s(\mathbb{R})$ for the nonlinear Schrödinger equation with $|u|^2$ holds if and only if $s \ge -\frac{1}{4}$.

Iwabuchi and Ogawa [12] developed a method for proving ill-posedness of evolution equations using the modulation space. This method is a refinement of previous work by Bejenaru and Tao [1]. Recently, many

Download English Version:

https://daneshyari.com/en/article/5024639

Download Persian Version:

https://daneshyari.com/article/5024639

<u>Daneshyari.com</u>