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1. Introduction

We consider the Cauchy problem for the generalized Boussinesq equation

O*u — Au+ A%u+ A(N(u)) =0,

U(O, I) = Uo(fﬂ), 6,5%(0, .T) = Uy (x) (1)

where u = u(t,z) : R x R — R is an unknown function, and ug and u; are given functions. Falk et al. [7]
derived this equation for d = 1 with N(u) = 4u® — 6u® in a study of shape-memory alloys. For N(u) = u?,
this is the “good” Boussinesq equation, which arises as a model for nonlinear strings [27].

In the sequel, we consider (1) with N(u) = wuP. If we ignore Aw, (1) is invariant under the scaling

transformation u — A7-T u(A\2¢, Az). From

_dy_2
[ux(0, )l zo = X727 [Juoll -
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we call the index s, := g — p%l scaling-critical, although the generalized Boussinesq equation does not have
the exact scaling invariance.

Well-posedness of (1) has been studied intensively for d =1 (see [2,19,8,9,18,17] and references therein).
Farah [8] proved that (1) with d = 1 and N(u) = u? is well-posed in H*(R) x H*"%(R) if d = 1,
p > 1, and s > max(s.,0). Kishimoto [17] showed that (1) with d = 1 and N(u) = u? is well-posed
in H*(R) x H*"%(R) if s > —4. He also proved that this result is sharp in the sense that the flow map
(uo,u1) € H*(R) x H*"%(R) — u(t) € H*(R) of (1) fails to be continuous at zero if s < —3.

Geba et al. [10] proved that the flow map (ug,u1) € H*(R) x H*72(R) — u(t) € H*(R) of (1) fails to be
p-times differentiable at zero if

2
——, for p odd,
p

1
——, for p even.
p

s <

It is known that the flow map is smooth if we obtain well-posedness through an iteration argument [1].
Hence, they showed that the standard iteration argument fails to work for (1). However, as well-posedness
involves the continuity of the flow map, there is a gap between ill-posedness and the presence of an irregular
flow map. In this paper, we prove ill-posedness of (1) by observing norm inflation.

Theorem 1.1. Let d € N, p € Z>2, and N(u) = uP. Assume that one of the following holds:

ed=1,p=35< 3.
OdEN,p:2,5<—%.
e deN, p>3, s <min(s.0).

For any (up,u1) € H*(R?) x H*=2(R%), and any € > 0, there exists a solution u. to (1) and t. € (0,¢) such
that

e (0) = wollzr= + 10ue (0) — w2 <&, [lue(te)llms >e™".

In particular, the flow map of (1) is discontinuous everywhere in H*(RY) x H*~2(R%).

Theorem 1.1 is an improvement of the result by Geba et al. in terms of the property of the flow map and
the range of s.
We set v :=u —i(1 — A)~td;u. Since u is real valued, (1) is equivalent to

1 1
i0yv — Av = —5(1)—5)4— 2—pw(\/—A)(v+E)p, @)
v(0,2) = vo(z),
where w(§) = % and vg = ug —i(1— A)_lul. The restriction to real-valued functions is not essential, but

assumed here for simplicity. When w is complex-valued, (1) is reduced to a system of nonlinear Schrodinger
equations, and the same ill-posedness result holds (see Remark 3.1).

Since w(—+v/A) is bounded in L?*(R?), we can neglect it and reduce (2) to the Schrodinger equation
with the power type nonlinearity. Hence, the same calculation as the nonlinear Schrédinger equation yields
well-posedness of (1). In contrast, from w(§) ~ |¢] for |€] < 1, (1) with d = 1 and p = 2 is well-posed
in H _%(RL although Kishimoto and Tsugawa [18] proved that well-posedness in H*(R) for the nonlinear
Schrédinger equation with |u|? holds if and only if s > —i.

Iwabuchi and Ogawa [12] developed a method for proving ill-posedness of evolution equations using the
modulation space. This method is a refinement of previous work by Bejenaru and Tao [1]. Recently, many
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