

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

A priori bounds for superlinear elliptic equations with semidefinite nonlinearity

Yūki Naito^{a,*}, Takashi Suzuki^b, Yohei Toyota^b

- ^a Department of Mathematics, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
- ^b Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

ARTICLE INFO

Article history: Received 30 April 2016 Accepted 23 November 2016 Communicated by Enzo Mitidieri

MSC: primary 35B45 35B53 35J60 secondary 35K55

Keywords:
A priori estimates
Liouville-type theorem
Nonlinear elliptic equation
Method of moving planes
Nonlinear parabolic equation

ABSTRACT

We derive a priori bounds for positive solutions of the superlinear elliptic problems $-\Delta u = a(x)u^p$ on a bounded domain Ω in \mathbf{R}^N , where a(x) is Hölder continuous in Ω . Our main motivation is to study the case where $a(x) \geq 0$, $a(x) \not\equiv 0$ and a(x) has some zero sets in Ω . We show that, in this case, the scaling arguments reduce the problem of a priori bounds to the Liouville-type results for the equation $-\Delta u = A(x')u^p$ in \mathbf{R}^N , where A is the continuous function defined on the subspace \mathbf{R}^k with $1 \leq k \leq N$ and $x' \in \mathbf{R}^k$. We also establish a priori bounds of global nonnegative solutions to the corresponding parabolic initial—boundary value problems.

© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider a priori bounds of positive solutions to the elliptic problems

$$\begin{cases}
-\Delta u = a(x)u^p & \text{in } \Omega, \\
u(x) = \phi(x) & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where Ω is a bounded domain in \mathbf{R}^N $(N \ge 2)$ with smooth boundary $\partial \Omega$, p > 1, a(x) is Hölder continuous and satisfies $a(x) \ge 0$, $a(x) \not\equiv 0$ in $\overline{\Omega}$, and $\phi \in C(\partial \Omega)$ satisfies $\phi \ge 0$ on $\partial \Omega$.

In order to prove existence and multiplicity of positive solutions to (1.1), it is important to obtain a priori bounds for its positive solutions (see, e.g. [4]). It is well known that Liouville-type results enable one

E-mail addresses: ynaito@ehime-u.ac.jp (Y. Naito), suzuki@sigmath.es.osaka-u.ac.jp (T. Suzuki), y-toyota@sigmath.es.osaka-u.ac.jp (Y. Toyota).

^{*} Corresponding author.

to derive a priori bounds for positive solutions of elliptic problems via the rescaling method. In the case where a(x) is continuous and strictly positive on $\overline{\Omega}$, a priori bounds was obtained by Gidas and Spruck [7]. The method in [7] is based on rescaling and Liouville theorems for nonnegative solutions to the equation $-\Delta u = u^p$ either in \mathbb{R}^N or in a half-space with 0 boundary condition.

Our main goal here is to establish similar results as in [7] for the semidefinite function a(x), namely, $a(x) \geq 0$, $a(x) \not\equiv 0$ in Ω and a(x) has some zero sets in Ω . In [7], the uniform positivity of a(x) plays a crucial role to derive the entire space problem $-\Delta u = u^p$ in \mathbf{R}^N or in a half-space. We will show that, in the semidefinite case, the scaling arguments reduce the problem of a priori bounds to the Liouville-type results for nonnegative solutions to the equation

$$-\Delta u = A(x')u^p \quad \text{in } \mathbf{R}^N,$$

where A is the continuous function defined on \mathbf{R}^k with $1 \le k \le N$ and $x' \in \mathbf{R}^k$.

Define $Z = \{x \in \overline{\Omega} : a(x) = 0\}$. First we consider the case $Z = \overline{\Omega} \setminus \omega$, where $\omega \subset \mathbf{R}^N$ is an open set with C^1 -boundary $\partial \omega$ satisfying $\overline{\omega} \subset \Omega$. For $x_0 \in \partial \omega$, $\nabla a(x_0)$ stands for $\lim_{x \in \omega, x \to x_0} \nabla a(x)$. We denote by $\xi(x_0)$ the outer unit normal vector on $\partial \omega$ at x_0 . We consider the following case:

- (A) In (1.1), a(x) is Hölder continuous and satisfies $a(x) \geq 0$, $a(x) \not\equiv 0$ in $\overline{\Omega}$. The set Z is given by $Z = \overline{\Omega} \setminus \omega$, where $\omega \subset \mathbf{R}^N$ is an open set with C^1 smooth boundary $\partial \omega$ satisfying $\overline{\omega} \subset \Omega$. The following either (i) or (ii) must hold.
- (i) $a \in C^1(\overline{\omega})$ and $\nabla a(x) \neq 0$ for all $x \in \partial \omega$.
- (ii) $a \in C^2(\overline{\omega})$ and $\nabla a(x) = 0$ for all $x \in \partial \omega$. For each $x_0 \in \partial \omega$, one has

$$\lim_{s \to 0+} \frac{d^2}{ds^2} a(x_0 - s\xi(x_0)) \neq 0. \tag{1.2}$$

Remark 1.1. Assume that (A) holds. Since $a(x) \ge 0$ in Ω , if $a \in C^1(\Omega)$, then $\nabla a(x) = 0$ for all $x \in \partial \omega$. The condition (1.2) requires that the Hessian matrix of a(x) is not 0 at $x = x_0$. In fact, we see that

$$\lim_{s \to 0+} \frac{d^2}{ds^2} a(x_0 - s\xi(x_0)) = \sum_{|\alpha|=2} \partial_x^{\alpha} a(x_0) (-\xi(x_0))^{\alpha},$$

where α is the multi-index (see Section 3). If a(x) is given by a nonnegative part of some function, a(x) may satisfy (i) of (A).

Theorem 1.1. Assume that 1 and (A) holds. Let <math>M > 0, and let ϕ satisfy $\|\phi\|_{L^{\infty}(\partial\Omega)} \leq M$. Then any positive solutions u of (1.1) satisfy $\|u\|_{L^{\infty}(\Omega)} \leq C$, where the constant C > 0 depends only on Ω , a, p and M.

Remark 1.2. (i) In Theorem 1.1, we can replace the condition (A) by that a satisfies, for each $x_0 \in \partial \omega$,

$$a(x) = \chi_{\overline{\omega}}(x) \cdot \left(\sum_{|\alpha| = m_0} \frac{1}{m_0!} \partial_x^{\alpha} a(x_0) (x - x_0)^{\alpha} + o(|x - x_0|^{m_0}) \right)$$
 as $x \to x_0$

with

$$\sum_{|\alpha|=m_0} \partial_x^{\alpha} a(x_0) (-\xi(x_0))^{\alpha} \neq 0,$$

where χ_A is the characteristic function of $A \subset \mathbf{R}^N$ and $m_0 = 1$ or 2. (See Section 3.)

Download English Version:

https://daneshyari.com/en/article/5024652

Download Persian Version:

https://daneshyari.com/article/5024652

<u>Daneshyari.com</u>