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a b s t r a c t

In this paper, we consider the following fractional nonlinear Schrödinger equations

ε2s(−∆)su+ V (x)u = P (x)g(u) +Q(x)|u|2
∗
s−2u, x ∈ RN

and prove the existence and concentration of positive solutions under suitable
assumptions on the potentials V (x), P (x) and Q(x). We show that the semiclassical
solutions uε with maximum points xε concentrating at a special set SP characterized
by V (x), P (x) and Q(x). Moreover, for any sequence xε → x0 ∈ SP , vε(x) :=
uε(εx+ xε) convergence strongly in Hs(RN ) to a ground state solution v of

(−∆)sv + V (x0)v = P (x0)g(v) +Q(x0)|v|2
∗
s−2v, x ∈ RN .

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this paper, we are concerned with the following fractional nonlinear Schrödinger equations with critical
exponents in RN ,

ε2s(−∆)su+ V (x)u = P (x)g(u) +Q(x)|u|2
∗
s−2u, x ∈ RN , (1.1)

where s ∈ (0, 1), N > 2s, 2∗s := 2N
N−2s , ε is a small parameter, V (x), P (x) and Q(x) are three real continuous

function on RN , and (−∆)s stands for the usual fractional Laplacian. Note that 2∗s is the critical exponent
for Sobolev embedding in RN , so the nonlinearity is of critical growth at infinity.

The fractional Schrödinger equation

iε
∂ψ

∂t
= ε2s(−∆)sψ + V (x)ψ − f(x, ψ) (1.2)
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was introduced by Laskin [29,28] through expanding the Feynman path integral from the Brownian-like to
the Lévy-like quantum mechanical paths, where (x, t) ∈ RN × (0,∞), 0 < s < 1, and V : RN → R is an
external potential function. Similar to the case s = 1, standing wave solutions to this equation are solutions
of the form ψ(x, t) = e−

iωt
ε u(x), where f satisfies that f(x, eiθψ) = eiθf(x, ψ) and u solves the elliptic

equation

ε2s(−∆)su+ (V (x)− ω)u = f(x, u). (1.3)

Recently, the fractional Schrödinger equation with a nonlinear source term (1.3) is of much interest, and
attracts much attention in nonlinear analysis. The existence, uniqueness, regularity results and asymptotic
decay properties can be found in, for example, [7,23,21,24,22,34,9,33,26]. For the results of fractional elliptic
equations in bounded domain, we refer to [8,35,36,31,32] and the references therein.

A solution ψ is referred to as a bound state of (1.3) if ψ → 0 as |x| → ∞. When ε is sufficiently small,
bound states of (1.3) are called semiclassical states, and an important feature of semiclassical states is
their concentration as ε → 0. Concerning the concentration phenomenon, there is a broad literature in the
classical case s = 1, see for example [3,2,20,25,14,17,15,16,18] and the references therein. Investigation of
the existence of solutions concentrating at certain points to nonlocal Schrödinger equations under different
conditions have appeared in [13,12,34,11,10,30]. In [13], the authors considered the superlinear problem

ε2s(−∆)su+ V (x)u = up, x ∈ RN

and obtained the multi-peak solutions via a Lyapunov–Schmidt variational reduction. In [11], a nonlocal
problem involving critical or almost critical exponents were considered, see also [10]. In [30], the authors
studied the problem

ε2s(−∆)su+ V (x)u = W (x)(f(u) + u2∗s−1), x ∈ RN

and construct two sets dependent on the potential functions as

Av := {x ∈ V : W (x) = W (xv)} ∪ {x ∈ V : W (x) > W (xv)}

and

Aw := {x ∈ W : V (x) = V (xw)} ∪ {x ∈ W : V (x) < V (xw)},

where V = {x ∈ RN : V (x) = minV }, W = {x ∈ RN : W (x) = maxW}, W (xv) = maxx∈VW (x)
and V (xw) = maxx∈W V (x). They explored the existence, convergence and decay estimate of semiclassical
solutions which will concentrate at Av or Aw under two kinds of different assumptions. The structure
assumptions like Av,Aw are firstly introduced by Ding and Liu [19] to deal with the existence and
concentration of semiclassical states for Schrödinger equations with magnetic fields. Recently, Alves, Xu
and Yang [1] employed this kind of assumptions to study Schrödinger–Poisson equations.

Motivated by the references mentioned above, in this paper we consider problem (1.1) and focus on
studying how the behavior of the three potentials affect the existence and concentration of the semiclassical
solutions with the presence of critical exponent term. We note that problem (1.1) involves three different
potentials which are more complicated than that of [30]. This makes the concentration sets more complex
and we have to overcome many difficulties, as we shall show in the following section.

By changing variables, if w is a solution of Eq. (1.1), then the function u(x) = w(εx) satisfies

(−∆)su+ V (εx)u = P (εx)g(u) +Q(εx)|u|2
∗
s−2u, x ∈ RN . (1.4)

We suppose that the nonlinearity g : R+ → R verifies the following hypotheses:

g(0) = 0, lim
s→0

g(s)
s

= 0. (1.5)
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