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a b s t r a c t

We consider positive solutions to semilinear elliptic problems with singular
nonlinearities, under zero Dirichlet boundary condition. We exploit a refined version
of the moving plane method to prove symmetry and monotonicity properties of the
solutions, under general assumptions on the nonlinearity.
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1. introduction

In this paper we study symmetry and monotonicity properties of positive solutions to the problem
−∆u = 1

uγ
+ f(x, u) in Ω ,

u > 0 in Ω ,
u = 0 on ∂Ω

(1.1)

where γ > 0,Ω is a bounded smooth domain of Rn and u ∈ C(Ω) ∩ C2(Ω).
Starting from the pioneering work [14] singular semilinear elliptic equations have been intensely studied,

see e.g. [4,5,7,9,10,15,19,21,22,20,26,27]. Furthermore, by a simple change of variables, it also follows that
the problem is related to equations involving a first order term of the type |∇u|

2

u . We refer the readers to
[2,6,16] for related results in this setting.

The main difficulties that we have to face are given by the fact that solutions in general are not in H1
0 (Ω)

and the nonlinearity 1
sγ + f(x, s) is not Lipschitz continuous at zero. Note that solutions are not in H1

0 (Ω)
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already in the case f ≡ 0, see [22]. Therefore, in particular, problem (1.1) has to be understood in the weak
distributional meaning with test functions with compact support in Ω , that is

Ω

(∇u,∇ϕ) dx =

Ω

ϕ

uγ
dx+


Ω

f(x, u)ϕdx ∀ϕ ∈ C1
c (Ω). (1.2)

The aim of this paper is to prove symmetry and monotonicity properties of the solution under general
assumptions on the nonlinearity. Namely we shall consider the case of nonlinearities that fulfill

(hp) f(x, t) is a Carathéodory function which is uniformly locally Lipschitz continuous with respect to the
second variable. Namely, for any M > 0 given, it follows

|f(x, t1)− f(x, t2)| ≤ Lf (M)|t1 − t2|, x ∈ Ω , t1, t2 ∈ [0, M ].
|f(x, t)| ≤ Kf (M), x ∈ Ω , t ∈ [0, M ].

The proof is based on the moving plane technique, see [17,25], as developed and improved in [3]. The crucial
point here is the lack of regularity of the solutions near the boundary, that is an obstruction to the use of
the test functions technique exploited in [3,17,25].

Our main result is the following

Theorem 1.1. Let u ∈ C(Ω) ∩ C2(Ω) be a solution to (1.1). Assume that the domain Ω is smooth, convex
w.r.t. the ν-direction (ν ∈ SN−1) and symmetric w.r.t. T ν0 , where

T ν0 = {x ∈ RN : x · ν = 0}.

With the notation xνλ = Rνλ(x) = x+ 2(λ− x · ν)ν, assume that f satisfies (hp), f(·, t) is non decreasing in
the x · ν-direction in the set Ων0 := Ω ∩ {x · ν < 0}, for all t ∈ [0,∞) and

f(x, t) = f(xν0 , t) if x ∈ Ω0 and t ∈ [0,∞).

Then u is symmetric w.r.t. T ν0 and non-decreasing w.r.t. the ν-direction in Ων0 . In particular, if Ω is a ball
centered at the origin of radius R > 0, then u is radially symmetric with ∂u∂r (r) < 0 for 0 < r < R.

Note that the monotonicity assumption on f , with respect to the first variable, is necessary for the
applicability of the moving plane method and for the validity of the result. This is well known already
in the case of non singular nonlinearities. Our theorem recovers and improves the previous result in [10] (see
also the applications in [7,8,11]) where a monotonicity assumption on the second variable of f(x, ·) on the
nonlinearity was required. In fact such a condition was necessary in [10] to use the decomposition of the
solution

u = u0 + w for some w ∈ H1
0 (Ω)

provided in [9] where u0 is the solution to the pure singular problem: u0 ∈ C(Ω) ∩ C2(Ω) and
−∆u0 = 1

u0γ
in Ω ,

u0 > 0 in Ω ,
u0 = 0 on ∂Ω .

(1.3)

See [9,12,13,23] for the uniqueness of the solution and [5,9] for the existence of the solution.
We develop a new technique that allows us to avoid the use of such a decomposition and this is the key

point in order to obtain the full symmetry result, namely to consider the general case of locally Lipschitz
continuous nonlinearities. A crucial point in the proof is the study of the problem near the boundary. We
combine a fine analysis of the behavior of the solution near the boundary based on comparison arguments
that go back to [9] with some ideas from [24] and with an improved test functions technique.
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