

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Fractal Strichartz estimate for the wave equation

Chu-Hee Cho^a, Seheon Ham^{b,*}, Sanghyuk Lee^a

- ^a School of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- ^b School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history: Received 13 August 2016 Accepted 3 November 2016 Communicated by Enzo Mitidieri

Keywords: Wave equation Strichartz estimate General measure We consider Strichartz estimates for the wave equation with respect to general measures which satisfy certain growth conditions. In \mathbb{R}^{3+1} we obtain the sharp estimate and in higher dimensions improve the previous results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let us consider the wave equation in $\mathbb{R}^n \times \mathbb{R}$:

$$\begin{cases} \partial_t^2 u - \Delta u = 0, \\ u(x, 0) = f, & \partial_t u(x, 0) = g. \end{cases}$$
 (1)

The space—time estimate for the solution of (1) which is called *Strichartz estimate* has been proven to be an important tool in studies of various problems. (See [22,21,12,14,18,11].) It is well-known that the estimate

$$||u||_{L_t^q(\mathbb{R}, L_x^r(\mathbb{R}^n))} \lesssim ||f||_{\dot{H}^s} + ||g||_{\dot{H}^{s-1}}$$
(2)

holds for $s \geq 0, 2 \leq q, r < \infty$ which satisfy

$$\frac{1}{q} + \frac{n}{r} = \frac{n}{2} - s, \qquad \frac{1}{q} + \frac{n-1}{2r} \le \frac{n-1}{4}.$$

Here \dot{H}^s is the homogeneous L^2 Sobolev space of order s. See [7] for the estimates with $r = \infty$. It was Strichartz [22] who first proved the estimate (2) when q = r. This was later extended to mixed norm estimates by Pecher [21]. (Also see [8].) The endpoint cases (r,q) = (2(n-1)/(n-3),2) except n=3 were obtained by Keel-Tao [11]. Klainerman and Machedon [12] showed the failure of (2) when $(n,r,q) = (3,\infty,2)$.

E-mail addresses: akilus@snu.ac.kr (C.-H. Cho), hamsh@kias.re.kr (S. Ham), shklee@snu.ac.kr (S. Lee).

^{*} Corresponding author.

In this note we consider a generalization of (2) by replacing the Lebesgue measure with general measure μ . More precisely, we study the estimate

$$||u||_{L^q(d\mu)} \lesssim ||f||_{H^s} + ||g||_{H^{s-1}}.$$
 (3)

Here we denote by $H^s(\mathbb{R}^n)$ the inhomogeneous L^2 Sobolev space of order s, which is the space of all tempered distributions f such that $(1+|\cdot|^2)^{\frac{s}{2}}\widehat{f} \in L^2(\mathbb{R}^n)$, equipped with the norm

$$||f||_{H^s(\mathbb{R}^n)} = ||(1+|\cdot|^2)^{\frac{s}{2}}\widehat{f}||_{L^2(\mathbb{R}^n)}.$$

This kind of estimates was studied in connection with problems in geometric measure theory, precisely, the sphere packing problem (see [17,27,19,20]).

Throughout this paper, the measure μ is assumed to be a nonnegative Borel regular measure with compact support in \mathbb{R}^{n+1} . Let us denote by $\mathfrak{M}(\mathbb{R}^{n+1})$ the space of such measures. In addition we impose uniform growth condition on μ as follows.

Definition 1.1. Let $\alpha \in (0, n+1]$. For $\mu \in \mathfrak{M}(\mathbb{R}^{n+1})$, we say that μ is α -dimensional if there exists a constant C_{μ} , independent of x and ρ , such that

$$\mu(B(x,\rho)) \le C_{\mu}\rho^{\alpha} \quad \text{for all } x \in \mathbb{R}^{n+1}, \ \rho > 0.$$
 (4)

Here $B(x, \rho)$ denotes the open ball of radius ρ centered at x. Also we define

$$\langle \mu \rangle_{\alpha} = \sup_{x \in \mathbb{R}^{n+1}, \ \rho > 0} \rho^{-\alpha} \mu(B(x, \rho)).$$

For $1 \le q \le \infty$ let us set

$$s(\alpha, q, n) = \begin{cases} \max\left\{\frac{n}{2} - \frac{\alpha}{q}, \frac{n+1}{4}\right\}, & \text{if } 0 < \alpha \le 1, \\ \max\left\{\frac{n}{2} - \frac{\alpha}{q}, \frac{n+1}{4} + \frac{1-\alpha}{2q}, \frac{n+2}{4} - \frac{\alpha}{4}\right\}, & \text{if } 1 < \alpha \le n, \\ \max\left\{\frac{n}{2} - \frac{\alpha}{q}, \frac{n+1}{4} + \frac{n+1-2\alpha}{2q}, \frac{n+1}{2} - \frac{\alpha}{2}\right\}, & \text{if } n < \alpha \le n+1. \end{cases}$$
 (5)

When n=2 Wolff [27] showed that (3) holds for α -dimensional measure μ if $s>\max(\frac{3}{4},1-\frac{\alpha}{4},1-\frac{\alpha}{q})$, $\alpha\in(1,3)$. Erdoğan [4] improved Wolff's result so that (3) holds for $s>s(\alpha,q,2)$, $\alpha\in(1,3)$ and also showed that (3) generally fails if $s< s(\alpha,q,2)$. When $n\geq 3$, Oberlin [19] obtained (3) for $\alpha\in(1,n+1)$ provided that $q<\alpha$ and $s>\frac{n-1}{2}$.

It is plausible to conjecture that (3) holds if $s > s(\alpha, q, n)$ (see Proposition 1.5) but like other open problems of similar nature complete resolution seems out of reach at this moment. However, for n = 3 and $\alpha \in [1, 4]$, we obtain the sharp estimate by the following theorem and Proposition 1.5.

Theorem 1.2. Let n = 3. Also let μ be an α -dimensional measure. Suppose that u is a solution to Eq. (1). Then (3) holds with

$$s > \begin{cases} s(\alpha, q, 3), & \text{if } 2 \le q \le \infty, \\ s(\alpha, 2, 3), & \text{if } 1 \le q \le 2. \end{cases}$$
 (6)

Furthermore, the implicit constant in (3) does not depend on particular choice of μ as long as $\langle \mu \rangle_{\alpha}$ is uniformly bounded.

Download English Version:

https://daneshyari.com/en/article/5024690

Download Persian Version:

https://daneshyari.com/article/5024690

<u>Daneshyari.com</u>