

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

The Evans–Krylov theorem for nonlocal parabolic fully nonlinear equations

Yong-Cheol Kim^a,*, Ki-Ahm Lee^{b,c}

- ^a Department of Mathematics Education, Korea University, Seoul 136-701, Republic of Korea
- ^b Department of Mathematics, Seoul National University, Seoul 151-747, Republic of Korea
- ^c School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

ARTICLE INFO

Article history: Received 5 January 2017 Accepted 21 May 2017 Communicated by Enzo Mitidieri

MSC 2010: 47G20 45K05 35J60 35B65 35D10 (60J75)

Keywords:
The Evans-Krylov theorem
Nonlocal parabolic fully nonlinear
equations
Viscosity solutions

ABSTRACT

In this paper, we prove the Evans–Krylov theorem for nonlocal parabolic fully nonlinear equations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Evans and Krylov proved independently an interior regularity for elliptic partial differential equations which states that any solution $u \in C^2(B_1)$ of a uniformly elliptic and fully nonlinear concave equation $F(D^2u) = 0$ in the unit ball $B_1 \subset \mathbb{R}^n$ satisfies an interior estimate $\|u\|_{C^{2,\alpha}(B_{1/2})} \leq C \|u\|_{C^{1,1}(B_1)}$ with some universal constants C > 0 and $\alpha \in (0,1)$, so-called the Evans-Krylov theorem (see [6,11] and [3]). Recently, Caffarelli and Silvestre [4] proved a nonlocal elliptic version of the Evans-Krylov theorem which describes that any viscosity solution $u \in L^{\infty}(\mathbb{R}^n)$ of concave homogeneous equation on $B_1 \subset \mathbb{R}^n$ formulated by elliptic integro-differential operators of order $\sigma \in (0,2)$ satisfies an estimate $\|u\|_{C^{\sigma+\alpha}(B_{1/2})} \leq C \|u\|_{L^{\infty}(\mathbb{R}^n)}$ with universal constants C > 0 and $\alpha \in (0,1)$. This nonlocal result makes it possible to recover the Evans-Krylov

E-mail addresses: ychkim@korea.ac.kr (Y.-C. Kim), kiahm@math.snu.ac.kr (K.-A. Lee).

^{*} Corresponding author.

theorem as $\sigma \to 2^-$. In this paper, we prove a parabolic version of the nonlocal elliptic result of Caffarelli and Silvestre.

We consider the linear parabolic integro-differential operators given by

$$Lu(x,t) - \partial_t u(x,t) = \text{p.v.} \int_{\mathbb{R}^n} \mu_t(u,x,y) K(y) \, dy - \partial_t u(x,t)$$
(1.1)

for $\mu_t(u,x,y) = u(x+y,t) + u(x-y,t) - 2u(x,t)$. Here we write $\mu(u,x,y) = u(x+y) + u(x-y) - 2u(x)$ if u is independent of t. We refer the detailed definitions of notations to [4,7-9]. Then we see that Lu(x,t) is well-defined provided that $u \in C_x^{1,1}(x,t) \cap B(\mathbb{R}_T^n)$ where $B(\mathbb{R}_T^n)$ denotes the family of all real-valued bounded functions defined on $\mathbb{R}_T^n := \mathbb{R}^n \times (-T,0]$ and $C_x^{1,1}(x,t)$ means $C_x^{1,1}$ -function in x-variable at a given point (x,t). Moreover, Lu(x,t) is well-defined even for $u \in C_x^{1,1}(x,t) \cap L_T^\infty(L_\omega^1)$ (see [10]).

We say that the operator L belongs to $\mathfrak{L}_0 = \mathfrak{L}_0(\sigma)$ if its corresponding kernel $K \in \mathcal{K}_0 = \mathcal{K}_0(\sigma)$ satisfies the uniform ellipticity assumption:

$$(2-\sigma)\frac{\lambda}{|y|^{n+\sigma}} \le K(y) \le (2-\sigma)\frac{\Lambda}{|y|^{n+\sigma}}, \quad 0 < \sigma < 2.$$

$$(1.2)$$

If $K(y) = c_{n,\sigma}|y|^{-n-\sigma}$ where $c_{n,\sigma} > 0$ is the normalization constant comparable to $\sigma(2-\sigma)$ given by

$$c_{n,\sigma} = \left(\int_{\mathbb{R}^n} \frac{1 - \cos(y_1)}{|y|^{n+\sigma}} \, dy \right)^{-1},$$

then the corresponding operator is $L = -(-\Delta)^{\sigma/2}$. Also we say the operator $L \in \mathfrak{L}_0$ belongs to $\mathfrak{L}_1 = \mathfrak{L}_1(\sigma)$ if its corresponding kernel $K \in \mathcal{K}_1 = \mathcal{K}_1(\sigma)$ satisfies $K \in \mathbb{C}^1$ away from the origin and satisfies

$$|\nabla K(y)| \le \frac{C}{|y|^{n+1+\sigma}}. (1.3)$$

Finally we say that the operator $L \in \mathfrak{L}_1$ belongs to $\mathfrak{L}_2 = \mathfrak{L}_2(\sigma)$ if its corresponding kernel $K \in \mathcal{K}_2 = \mathcal{K}_2(\sigma)$ satisfies $K \in \mathbb{C}^2$ away from the origin and satisfies

$$|D^2K(y)| \le \frac{C}{|y|^{n+2+\sigma}}.$$
 (1.4)

The maximal operators are defined by

$$\mathbf{M}_{0}^{+}u(x,t) = \sup_{\mathbf{L}\in\mathfrak{L}_{0}} \mathbf{L}u(x,t) = (2-\sigma) \int_{\mathbb{R}^{n}} \frac{\Lambda \mu_{t}^{+}(u,x,y) - \lambda \mu_{t}^{-}(u,x,y)}{|y|^{n+\sigma}} dy,$$

$$\mathbf{M}_{1}^{+}u(x,t) = \sup_{\mathbf{L}\in\mathfrak{L}_{1}} \mathbf{L}u(x,t) \quad \text{and} \quad \mathbf{M}_{2}^{+}u(x,t) = \sup_{\mathbf{L}\in\mathfrak{L}_{2}} \mathbf{L}u(x,t).$$

We shall consider nonlinear integro-differential operators, which originates from stochastic control theory with jump processes related with

$$\mathbf{I}u(x,t) = \inf_{\beta \in \mathcal{B}} \mathcal{L}_{\beta}u(x,t),$$

where $L_{\beta}u(x,t) = \text{p.v.} \int_{\mathbb{R}^n} \mu_t(u,x,y) K_{\beta}(y) dy$ (see [1,4,7,8,12,13] for the elliptic case and [9,10] for the parabolic case). In this paper, we are mainly interested in the nonlocal parabolic concave equations

$$\mathbf{I}u(x,t) - \partial_t u(x,t) = 0 \quad \text{in } Q_1. \tag{1.5}$$

[Notations and Definitions] Let $\sigma \in (0,2)$ and r > 0.

• Denote $Q_r = B_r \times I_r^{\sigma}$ and $Q_r(x,t) = Q_r + (x,t)$ for $(x,t) \in \mathbb{R}_T^n$, where $B_r(x)$ is the open ball with center $x \in \mathbb{R}^n$ and radius r > 0, $B_r = B_r(0)$ and $I_r^{\sigma} = (-r^{\sigma}, 0]$.

Download English Version:

https://daneshyari.com/en/article/5024708

Download Persian Version:

https://daneshyari.com/article/5024708

<u>Daneshyari.com</u>