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a b s t r a c t

In this paper, the authors prove that the inequalities of Poincaré-type are preserved
under the action of the Littlewood–Paley operators. Applications to boundedness
of the Littlewood–Paley operators on Lipschitz spaces and Hajłasz–Sobolev spaces
are considered.
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1. Introduction

Let S(Rn) be the Schwartz class on the Euclidean space Rn equipped with the well-known classical
topology, and S ′(Rn) be the Schwartz distribution equipped with the weak-∗ topology. Let φ ∈ S(Rn) be
such that

supp φ̂ ⊂
{
x ∈ Rn : 1

2 < |x| < 2
}
. (1.1)

Here and hereafter, φ̂ denotes the Fourier transform of φ, namely, for any ξ ∈ Rn,

φ̂(ξ) := (2π)−n/2
∫
Rn
e−ix·ξf(x) dx.
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For any t ∈ (0,∞) and x ∈ Rn, let φt(x) := t−nφ(x/t). For any f ∈ S ′(Rn) and x ∈ Rn, the Littlewood–Paley
g-function g(f) is defined by setting

g(f)(x) :=
{∫ ∞

0
|φt ∗ f(x)|2 dt

t

} 1
2

(1.2)

and the Lusin-area integral S-function S(f) by setting

S(f)(x) :=
{∫ ∞

0

∫
|y−x|<t

|φt ∗ f(y)|2 dy dt
tn+1

} 1
2

, (1.3)

as well as the Littlewood–Paley g∗
λ-function g∗

λ(f) by setting

g∗
λ(f)(x) :=

{∫∫
Rn+1

+

(
t

t+ |x− y|

)nλ

|φt ∗ f(y)|2 dy dt
tn+1

} 1
2

, (1.4)

where λ ∈ (0,∞) is a fixed parameter.
Throughout the paper, we use the following notation: for any locally integrable function f on Rn and for

any ball B ⊂ Rn, let

fB := 1
|B|

∫
B

f(x) dx. (1.5)

The main result of this paper is as follows.

Theorem 1.1. Let p0 ∈ [1,∞). Assume that f ∈ L1
loc (Rn) and, for any ball B ⊂ Rn of radius r ∈ (0,∞),

1
|B|

∫
B

|f(x) − fB | dx ≤ rα

[
µ(B)
|B|

]1/p0

, (1.6)

where either

(i) α = 0 and µ equals to the Lebesgue measure on Rn, or
(ii) α ∈ (0, min{1, n/p0}) and µ is a locally finite positive Borel measure.

Assume that p = 1 when α = 0, or p ∈ [1, np0/(n − αp0)) when α ∈ (0, 1). Let T be the Littlewood–Paley
g-function, or the Lusin-area S-function, or the Littlewood–Paley g∗

λ-function with λ ∈ (2,∞), respectively,
as in (1.2)–(1.4). Then T (f) is either infinite everywhere or finite almost everywhere and, in the latter case,
for any ball B ⊂ Rn, [

1
|B|

∫
B

|T (f)(x) − (T (f))B |p dx
]1/p

≤ Crα

[
sup
k∈N

µ(2kB)
|2kB|

]1/p0

, (1.7)

where (T (f))B is as in (1.5) with f replaced by T (f), and C is a positive constant independent of f and B.

It should be pointed out that, when α = 0 and µ is the Lebesgue measure on Rn, then the results of
Theorem 1.1 directly implies the boundedness of the Littlewood–Paley operators on the space BMO (Rn),
which was proved by Meng and Yang [15]. Recall that the space BMO (Rn) is defined to be the set of all
locally integrable functions f such that

∥f∥BMO (Rn) := sup
B⊂Rn

1
|B|

∫
B

|f(x) − fB | dx < ∞,

where fB is as in (1.5) and the supremum is taken over all balls B ⊂ Rn. Boundedness of the Littlewood–
Paley operators and the Hardy–Littlewood maximal operator on BMO (Rn)-type spaces has been studied in
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