

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Poincaré inequalities for Littlewood–Paley operators

Liguang Liu^a, Dachun Yang^{b,*}, Liying Zhang^b

^a Department of Mathematics, School of Information, Renmin University of China, Beijing 100872, China
 ^b School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

ARTICLE INFO

Article history: Received 2 March 2017 Accepted 16 May 2017 Communicated by S. Carl

MSC: primary 42B25 secondary 42B35 30H35

Keywords:
Poincaré inequality
Littlewood-Paley operator
BMO space
Lipschitz space
Hajłasz-Sobolev space

ABSTRACT

In this paper, the authors prove that the inequalities of Poincaré-type are preserved under the action of the Littlewood–Paley operators. Applications to boundedness of the Littlewood–Paley operators on Lipschitz spaces and Hajłasz–Sobolev spaces are considered.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\mathcal{S}(\mathbb{R}^n)$ be the Schwartz class on the Euclidean space \mathbb{R}^n equipped with the well-known classical topology, and $\mathcal{S}'(\mathbb{R}^n)$ be the Schwartz distribution equipped with the weak-* topology. Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be such that

$$\operatorname{supp} \widehat{\varphi} \subset \left\{ x \in \mathbb{R}^n : \frac{1}{2} < |x| < 2 \right\}. \tag{1.1}$$

Here and hereafter, $\widehat{\varphi}$ denotes the Fourier transform of φ , namely, for any $\xi \in \mathbb{R}^n$,

$$\widehat{\varphi}(\xi) := (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix\cdot\xi} f(x) \, dx.$$

E-mail addresses: liuliguang@ruc.edu.cn (L. Liu), dcyang@bnu.edu.cn (D. Yang), zhangliying@mail.bnu.edu.cn (L. Zhang).

^{*} Corresponding author.

For any $t \in (0, \infty)$ and $x \in \mathbb{R}^n$, let $\varphi_t(x) := t^{-n}\varphi(x/t)$. For any $f \in \mathcal{S}'(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, the Littlewood-Paley g-function g(f) is defined by setting

$$g(f)(x) := \left\{ \int_0^\infty |\varphi_t * f(x)|^2 \frac{dt}{t} \right\}^{\frac{1}{2}}$$
 (1.2)

and the Lusin-area integral S-function S(f) by setting

$$S(f)(x) := \left\{ \int_0^\infty \int_{|y-x| < t} |\varphi_t * f(y)|^2 \frac{dy \, dt}{t^{n+1}} \right\}^{\frac{1}{2}}, \tag{1.3}$$

as well as the Littlewood-Paley g_{λ}^* -function $g_{\lambda}^*(f)$ by setting

$$g_{\lambda}^{*}(f)(x) := \left\{ \iint_{\mathbb{R}^{n+1}_{+}} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} |\varphi_{t} * f(y)|^{2} \frac{dy \, dt}{t^{n+1}} \right\}^{\frac{1}{2}}, \tag{1.4}$$

where $\lambda \in (0, \infty)$ is a fixed parameter.

Throughout the paper, we use the following notation: for any locally integrable function f on \mathbb{R}^n and for any ball $B \subset \mathbb{R}^n$, let

$$f_B := \frac{1}{|B|} \int_B f(x) \, dx.$$
 (1.5)

The main result of this paper is as follows.

Theorem 1.1. Let $p_0 \in [1, \infty)$. Assume that $f \in L^1_{loc}(\mathbb{R}^n)$ and, for any ball $B \subset \mathbb{R}^n$ of radius $r \in (0, \infty)$,

$$\frac{1}{|B|} \int_{B} |f(x) - f_B| \, dx \le r^{\alpha} \left[\frac{\mu(B)}{|B|} \right]^{1/p_0}, \tag{1.6}$$

where either

- (i) $\alpha = 0$ and μ equals to the Lebesgue measure on \mathbb{R}^n , or
- (ii) $\alpha \in (0, \min\{1, n/p_0\})$ and μ is a locally finite positive Borel measure.

Assume that p = 1 when $\alpha = 0$, or $p \in [1, np_0/(n - \alpha p_0))$ when $\alpha \in (0, 1)$. Let T be the Littlewood-Paley g-function, or the Lusin-area S-function, or the Littlewood-Paley g_{λ}^* -function with $\lambda \in (2, \infty)$, respectively, as in (1.2)-(1.4). Then T(f) is either infinite everywhere or finite almost everywhere and, in the latter case, for any ball $B \subset \mathbb{R}^n$,

$$\left[\frac{1}{|B|} \int_{B} |T(f)(x) - (T(f))_{B}|^{p} dx\right]^{1/p} \le Cr^{\alpha} \left[\sup_{k \in \mathbb{N}} \frac{\mu(2^{k}B)}{|2^{k}B|}\right]^{1/p_{0}},\tag{1.7}$$

where $(T(f))_B$ is as in (1.5) with f replaced by T(f), and C is a positive constant independent of f and B.

It should be pointed out that, when $\alpha = 0$ and μ is the Lebesgue measure on \mathbb{R}^n , then the results of Theorem 1.1 directly implies the boundedness of the Littlewood–Paley operators on the space BMO (\mathbb{R}^n), which was proved by Meng and Yang [15]. Recall that the space BMO (\mathbb{R}^n) is defined to be the set of all locally integrable functions f such that

$$||f||_{\mathrm{BMO}(\mathbb{R}^n)} := \sup_{B \subset \mathbb{R}^n} \frac{1}{|B|} \int_B |f(x) - f_B| \, dx < \infty,$$

where f_B is as in (1.5) and the supremum is taken over all balls $B \subset \mathbb{R}^n$. Boundedness of the Littlewood–Paley operators and the Hardy–Littlewood maximal operator on BMO (\mathbb{R}^n)-type spaces has been studied in

Download English Version:

https://daneshyari.com/en/article/5024710

Download Persian Version:

https://daneshyari.com/article/5024710

Daneshyari.com