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1. Introduction and main result

In this paper, we are interested in the removable singularities for viscosity subsolutions to degenerate
elliptic Pucci operators in the setting of the Heisenberg group.

In order to describe our main result, we will first recall some basic facts and properties of Heisenberg
group.

1.1. Heisenberg group

For n € Nt let H” be the Heisenberg group (R2"*1 o), where o is defined as

n
Eoli=a+ay+dt+1+2> (i —yidi)
=1
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fOI‘ any g = (l’,yﬂf), é = ("2‘7:[}7%) in an Wlth T = (-rlw-'umn)a i' = (jly-'-7-%n)7 Yy = (yla---7yn) a‘nd
9= (91,...,0n) denoting elements of R™. We consider the norm on H" defined by

. » 73
I€llr = (Z G y3>> )
i=1
The corresponding distance on H” is defined accordingly by setting
dp(€,8) = (1€ o &lla,

where é_l is the inverse of é with respect to o, i.e. é_l = —f. For every ¢ € H” and R > 0, we will use the

notations
Dr(§) ={ne€H" : du(¢,n) < R}
and
Dg(¢) ={n€H" : du(&n) < R}.

The vector fields

0 0
X, =— 42y, — =1,...
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form a base of the Lie algebra of vector fields on the Heisenberg group. The Heisenberg gradient, or horizontal
gradient, of a regular function w : H* — R! is then defined by

Vaw = (Xiw,..., Xyw, 1w, ..., Yw)T,

while its Heisenberg Hessian matrix is

X1X1w XnXlw Y1X1w YnXlw

V2 W= XiXpw - X Xpw YNXpw -0 YV Xhw
H ’ X1Y1w tee XnYlw Y1Y1’LU e YnYlw
X1Y1w XnYlw Y1Y1U) YnYlw

By direct computation, it is easy to see that

Viw = % (v%,w + (vﬁiw)T> +2TwJ,

0, In
(%5

We call §(VHw + (Viw)") the symmetric part of V#w and denote it by V3 jw.

where
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