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1. Introduction
Let RN, N > 2, denote the N-dimensional Euclidean space. We use the notation B(x,r) to denote the

open ball centered at x with radius » > 0, whose boundary is denoted by S(z,r). The LY mean over the
spherical surface S(0,r) for a measurable function u is defined by

1 1/q
S, = 148
q(u7r) |S(0,7’)| S(O,r) |U($)| (37)
1 1/q
= / lu(ro)|? dS(o)
WN-1 J5(0,1)
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when 1 < ¢ < oo, where |S(0,7)] = wy_17V "1 with wy_1 denoting the area of the unit sphere and dS
denotes the surface area measure on S(0,1). Gardiner [5, Theorem 2] showed that

lim%nf (1—r)N-DA=VaDg (4, r) =0
r—1—

when u is a Green potential in the unit ball B = B(0,1), (N —3)/(N -1) < 1/g < (N = 2)/(N —1)
and ¢ > 0, as an extension of the result by Stoll [21] in the plane case. The first author gave versions of
Gardiner’s result for Riesz potentials in his paper [13, Section 5. The first and the third authors [17] studied
the existence of boundary limits for BLD (Beppo Levi and Deny) functions u on the unit ball B of RV
satisfying

/ [Vu(x)[P(1 - |z|)Y dz < oo, (1.1)
B
where V denotes the gradient, 1 < p < oo and —1 < v < p — 1. In fact, it was shown that

lim%nf (1 —p)N=pEN/p=(N=D)/ag (4 1) =0
r—1—

when ¢ > 0 and (N —p—1)/(p(N —=1)) < 1/¢g < (N —=p+7)/(p(N —1)). In [17], we also studied the
existence of boundary limits for monotone BLD functions u on the unit ball B of R satisfying (1.1).
For 0 < a < N and f € L} .(B), we define the Riesz potential of order a by

loc
If(z) = /B & — 5N f(y) dy.

We deal with functions f € L (B) satisfying

loc

Hf“MP(‘),w(B) = Oilililw(l - r)”fHLP(‘)(B\B(O,r)) < 0

with a variable exponent p(-) and a doubling weight w; the space M p().w (B) consisting of such functions is
sometimes referred to as a (complementary) Morrey type space with variable exponent (see Section 2 for
the definitions of p(-) and w). For these spaces, we refer to [1-3] and [18]. Our main aim in this paper is to
discuss the weighted limit :

liminf (1 —7)%w(1 —r)PS, ((Iaf)p(r), 7‘)

r—1—

when (1 — |y|)*f(y) € MP()<(B) for some & > 0 (see Theorems 3.1 and 4.2 below); the exponent d will be
given later.
Let G(z,y) be the Green kernel on B. We define the Green potential for f € L} (B) by

loc
Gf(x) = /B Gl 9)1(y) dy.

In Section 5, we study the existence of weighted spherical limits for Green potentials G f with (1—|y|)f(y) €
MP()(B) as an extension of Gardiner [5, Theorem 2] (see Theorem 5.4 below).

A continuous function « on an open set §2 is called monotone in the sense of Lebesgue [8] if for every
relatively compact open set G C {2,

maxu =maxvu and minwu = minuw.
G oG G

Harmonic functions on {2 are monotone in 2. More generally, solutions of elliptic partial differential
equations of second order and weak solutions for variational problems may be monotone (see [6]). See
also [7,10,11,14,15,24,25] and [26]. The last section is concerned with weighted spherical limits for monotone
Sobolev functions u with |Vu(y)|"* € Mﬁ(')’w(B) with p; > N — 1 (see Theorem 6.1 below). See Section 6
for the definition of M fl(')’w(B). Essential tool in treating monotone functions is Lemma 6.4 below.

For related results on spherical means, see [12,13], [15,20,22] and [23]. We also refer the reader to the
papers [9] and [19] for weighted integral means over balls.



Download English Version:

https://daneshyari.com/en/article/5024720

Download Persian Version:

https://daneshyari.com/article/5024 720

Daneshyari.com


https://daneshyari.com/en/article/5024720
https://daneshyari.com/article/5024720
https://daneshyari.com

