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a b s t r a c t

This paper concerns the effect of viscosity on the degenerate lake equations (anelastic
limit) when the bottom topography vanishes on the shore. We establish the existence
and uniqueness of a global weak solutions for various choices of viscosity term in
weighted Sobolev spaces where the weight is assumed to be a power type weight. Our
solution is constructed by adapting carefully the known works on the incompressible
Navier–Stokes equations in unweighted context. Finally we study, in one case, the
vanishing viscosity limit when the solution of the inviscid lake equations is regular
enough generalizing the results by Martino et al. (2001) to the degenerate case.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The viscous lake equations (anelastic limit) have been derived in order to model the evolution of the
vertically averaged horizontal components of the 3D velocity to the incompressible viscous fluid confined
to a shallow basin with varying bottom topography. These equations can be obtained from the following
viscous shallow water equations by letting the Froude number (noted by Fr in the sequel) go to zero when
the initial height converges to a non-constant function depending on the space variable:∂t(hv) + div(hv ⊗ v) +Ah(v) + 1

2 Fr2∇h
2 = 0, in Ω ,

∂th+ div(hv) = 0, in Ω ,
(1.1)

where h(t, x) is the water height, v(t, x) is the velocity of a viscous fluid and Ah is a viscous second order
operator depending on h. v ⊗ v is the matrix with components vivj . h is classically assumed positive but
can eventually vanishes, v is a vector valued function and both are defined on a bounded subset Ω of R2.
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Following Lions’s book [29] (see also [1,8,9,32]), there exist various models (or approximations) for Ah
like for instance

Ah(·) = −2µdiv(hD(·) + hdiv(·) I), Ah(·) = −µh∆(·), (1.2)

where µ > 0 represents the eddy viscosity coefficient, I is the 2×2 identity matrix and D(·) = (∇·+(∇·)t)/2
is the deformation tensor.

Before moving to viscous lake model, let us fix some ideas concerning the analysis of well posedness
of System (1.1). One of the major difficulty on this analysis is to deal with vacuum. Since the works of
P.-L. Lions on the compressible Navier–Stokes equations (the same equations where 1

2 Fr2∇h2 is replaced
by ∇hγ , γ > 0 and Ah = −µh∆(·)), we are able to prove the existence of global weak solutions of System
(1.1) with Ah = −µh∆(·) for large initial data that may vanish. Nonetheless, important progress has been
made by D. Bresch and B. Desjardins in [3] to handle the existence of global weak solutions of viscous
shallow water equations with Ah(·) = −2µdiv(hD(·)) as diffusion term. The key point in their paper [3] is to
show that the structure of the diffusion term provides some regularity for h thanks to a new mathematical
entropy inequality. In [3], the authors proved the existence of global weak solutions of System (1.1) whereas
damping terms are added to the momentum equation (1.1)1. This result was improved very recently by
A. Vasseur, C. Yu in [42] where the authors proved that the result holds true without adding the damping
terms. As a limitation of these elegant results [3,42], the global well posedness of viscous shallow water
equations with Ah(·) = −2µdiv(hD(·) + hdiv(·) I) as diffusion term is still a very interesting open problem.

The viscous lake equations considered in this paper have the following equations
∂t(buµ) + div(buµ ⊗ uµ) +Ab(uµ) + b∇pµ = 0, in Ω ,
div(buµ) = 0, in Ω ,

(1.3)

for (x, t) ∈ Ω × (0, T ) with Ω ⊂ R2, a bounded Lipschitz domain. Here, uµ = uµ(x, t) = (uµ1 (x, t), uµ2 (x, t))
stands for the two-dimensional horizontal component of the fluid velocity, p = p(t, x) is the pressure and Ab
is a viscous second order operator depending on b which can satisfy the two expressions

(i) Ab(·) = −2µdiv(bD(·) + 2bdiv(·) I), (ii) Ab(·) = −µb∆(·).

Moreover, the bottom function b(x) is a given function which assumed to be a power type weight in the sequel.
The second equation in System (1.3) shows that the system does not describe incompressible flow, it is a
constraint that plays a role similar to that played by the incompressibility condition for the incompressible
Navier–Stokes system. However, since we do not have an existence result concerning the solution of viscous
shallow water equations with viscosity term given by Ah(·) = −2µdiv(hD(·) + hdiv(·) I), then there is no
mathematical result until now allowing us to justify the derivation of viscous lake model (1.3)-(i) from viscous
shallow water model (1.1). The unique rigorous derivation (also in the non-degenerate case, i.e. when the
bottom topography is strictly positive) is limited to the case when Ah = −2µdiv(2hD(·)) and can be found
in the paper of D. Bresch, M. Gisclon and C. K. Lin [5]. Noticing that the difference between these
expressions of viscosity term, namely Ab = −µdiv(2bD(·)) and Ab = −2µdiv(bD(·) + bdiv(·) I), is not very
important on the analysis of weak solutions of viscous lake model (1.3).

Constant bathymetry. In case when b is a constant, System (1.3) becomes similar to the classical 2D
incompressible Navier–Stokes equations which is very well understood. In such case, the reader is referred
to [28,39,40,2] for various existing surveys on the question.

Variable bathymetry. When the depth b varies but bounded away from zero, the well-posedness can be proved
by adapting the same procedure as in C. D. levermore and M. Sammartino [27] without additional
difficulty.
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