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a b s t r a c t

In this paper we use the modified method of potential wells to study the properties
of solutions for a class of higher order nonlinear parabolic equations with p-Laplace
term −(|ux|p−2ux)x and nonlocal source |u|q−1u − 1

|Ω|


Ω
|u|q−1udx. Global exis-

tence, uniqueness, blow up in finite time and asymptotic behavior of solutions will
be proved under different initial conditions. Furthermore, a numerical example is
given to illustrate the blow-up of solutions in finite time.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this article, we consider the following initial and boundary value problem for a class of nonlinear
parabolic equation describing thin-film epitaxial growth

ut + uxxxx − (|ux|p−2ux)x = |u|q−1u− 1
|Ω |


Ω

|u|q−1udx, (x, t) ∈ Ω × (0, T ),

ux = uxxx = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = u0(x), x ∈ Ω ,

(1.1)

where Ω ⊂ R is an open interval, p > 1, q > max{1, p− 1}. u0 ∈ H2(Ω) satisfies

Ω
u0dx = 0.

It is well known that fourth-order reaction–diffusion equations describe a variety of important physical
processes, such as phase transition, thin-film theory, lubrication theory etc. Usually Problem (1.1) can
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be regarded as a simplified model to describe the evolution of the epitaxial growth of nanoscale thin films
(see [2,16]), where u(x, t) denotes the height from the surface of the film, uxxxx corresponds to the capillarity-
driven surface diffusion, and the p-Laplace term (|ux|p−2ux)x denotes the upward hopping of atoms. Due to
Zangwill [16] the height u(x, t) of a film in epitaxial growth can be described by the basic model

ut = g −∇ · j + η (1.2)

with periodic boundary conditions and some initial conditions. The phenomenological approach is to expand
j in ∇u and its powers. Keeping only “sensible” terms yields

j = A1∇u+A2∇(∆u) +A3|∇u|2∇u+A4∇|∇u|2,

see [16] for details. Ortiz et al. [9] modified this model in several respects. In particular, they showed that A4
= 0 if Onsager’s reciprocity relations held, and the terms in (1.2) had the following physical interpretations

g : the deposition flux,
A1∆u : diffusion due to evaporation–condensation,
A2∆2u : capillarity-driven surface diffusion,
A3|∇u|2∇u : upward hopping of atoms.

The epitaxial growth of nanoscale thin films has recently received increasing interest in materials science.
The following well-known equation

ut + ∆2u− div(f(∇u)) = g(x), (1.3)

where a reasonable choice of f(s) is f(s) = |s|p−2s was studied by King, Stein and Winkler [2] who proved
the existence, uniqueness and regularity of solutions in an appropriate function space for the initial and
boundary value problem. Liu [6,7] studied the following equation

ut + div[m(u)k∇∆u− |∇u|p−2∇u] = 0 (1.4)

in one and two dimensional spaces. On the basis of the uniform Schauder type estimates and Campanato
spaces, he proved the global existence of classical solutions. In the absence of −(|ux|p−2ux)x in (1.1) Qu and
Zhou [11] considered the following thin-film equation

ut + uxxxx = |u|p−1u− 1
|Ω |


Ω

|u|p−1udx. (1.5)

By using the method of potential wells they obtained a threshold result of global existence and blow up for
the sign-changing weak solutions and the conditions under which the global solutions extinct in finite time.

The method of potential well was first proposed by Sattinger [12] in 1968 when dealing with a class of
non-linear hyperbolic initial–boundary value problem

utt −∇2u+ f(x, u) = 0, (x, t) ∈ Ω × (0, T ),
u = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = U(x), ut(x, 0) = V (x) x ∈ Ω .

(1.6)

This method is based on the ‘potential’ energies J(u) associated with Problem (1.6). Suppose that J has
a local minimum at u = U(x). Then, in analogy with the local minimum of a potential function for a
mechanical system with a finite number of degree of freedom, imagine a potential well W situated at u = U
in function space. If U lies in W and if the total energy of the initial data is less than the depth of W , then
Problem (1.6) has a global solution. After that many authors [1,4,5,8,10,13] studied the global existence and
nonexistence of solutions of initial and boundary value problem for various nonlinear evolution equations
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