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a b s t r a c t

We discuss Stochastic Approximation Monte Carlo (SAMC) simulations, and Wang–Landau Monte Carlo
(WLMC) simulations as one form of SAMC simulations, in an application to determine the density of states
of a class of continuum polymer models. WLMC has been established in the literature as a powerful tool
to determine the density of states of polymermodels, but it has also been established that not all versions
of WLMC really converge to the desired density of states. Convergence of SAMC simulations has been
established in themathematical literature and discussingWLMC as a special case of SAMC brings a clearer
perspective to the properties of WLMC. On the other hand, practical convergence of SAMC simulations
with a fixed simulation effort needs to be established for given physical problems and, for practical
applications, the relative efficiency and accuracy of the two approaches need to be compared.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Wang–Landau Monte Carlo simulations belong to the broader
class of flat-histogramMonte Carlo simulations aimed at obtaining
an estimate of the density of states of a system. They were first ap-
plied to spin models [1,2] but their use was soon extended to poly-
mermodels [3–9]. In the last ten yearsWLMChas been shown to be
a very powerful tool for the determination of the density of states
of polymermodels, see, e.g., [10–16] or reviews in [17–19], compa-
rable to multi-canonical simulation approaches [20–22]. The con-
vergence properties of the original formulation of WLMC has been
an issue of controversy [23,24] and simulations clearly pointed to
a saturation of the final error [25] irrespective of the simulation ef-
fort employed. This has led to the suggestion of a modification of
the original method [26,27] which was shown to converge in the
selected applications. However, it has been pointed out [28] that
the practical convergence properties also of this version of WLMC
may be strongly dependent on the physical model it is applied to.

In parallel to much of this development, Stochastic Approxima-
tion Monte Carlo (SAMC) has been formulated [29,30] in the con-
text of stochastic optimization problems. Liang et al. [30] showed
that WLMC could be seen as a version of SAMC and using the
mathematical background of stochastic approximation methods
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they proved the convergence of SAMC. Understanding the neces-
sary conditions for this convergence also clarified why the modi-
fied WLMC [26,27] converged, whereas the original version [1,2]
yielded an excellent (and adjustable) approximation to the density
of states, but did not strictly speaking converge.

We will discuss in the next section the theoretical background
of the SAMC andWLMC ideas and discuss in which wayWLMC can
be seen as a version of SAMC. This discussion will also point out
strong and weak points for the practical use of both methods. An
abridged first comparison of the two methods has been presented
in [31]. In Section 3 we will introduce the model for which both
methodswill then be comparedwith respect to their practical use-
fulness. Section 4 will then compare the two methods concerning
quality of convergence with a given simulation time effort and dis-
cuss the tunability of the SAMC method, which has not been sys-
tematically analyzed for applications to physics problems so far, by
suitable choice of its free parameters. Finally, Section 5will present
our conclusions.

2. Theoretical background

The idea of the WLMC method [1,2] is that an unbiased ran-
domwalk over micro-states (randomwalk in configuration space)
will visit every admissible energy value of a Hamiltonian defined
on this configuration space proportional to the number of micro-
states, g(E), with that energy (or the measure of the set of points
in configuration space having an energy in the interval [E, E + dE]
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for continuous ranges of energies and states). The quantity, g(E), is
the density of states of the model. When one accepts a suggested
transition between micro-states x′ with energy E ′ and x with en-
ergy E with a modified Metropolis probability min(1, g(E ′)/g(E)),
a random walk over the range of admissible energies will be cre-
ated. Since g(E) is not known but the target of the simulation, one
determines it iteratively. At the beginning of the simulation one
starts from the unbiased assumption g(E) = 1∀ E, i.e., ln[g(E)] =

0∀E (since g(E) varies over hundreds of orders of magnitude, one
typically works with ln[g(E)] = S(E), where S(E) is the micro-
canonical entropy). One also introduces a histogram of visits,H(E),
to each energy state and a modification factor, f , which is typically
set to f = e (Euler’s constant) as a start. During the WLMC simula-
tion onemonitors the flatness ofH(E) andwhen |H(E)/H(E)−1| <

1− c ∀ E, where H(E) is the average visitation to all energy values,
one changes f →

√
f and resets H(E) = 0 ∀ E. The constant c is

typically taken as c ≥ 0.8. An update at level n of the modification
factor then reads

ln[g(E)] = ln[g(E)] + 2−n (1)
H(E) = H(E) + 1.

Experience [11,12] shows that for continuum polymer models this
has to be continued until 2−n is of the order 10−7

−10−8, i.e., up to
n = 23 − 26. The resulting ln[g(E)] = S(E) is only determined up
to a constant arbitrary shift factor. Wewant to note two properties
here for future reference which are both connected to the use of a
visitation histogram.

• The run time of the algorithm is not predictable as the times
when the flatness criterion is fulfilled are stochastic.

• One has to know the admissible energy range for the model at
the outset (or determine it from pre-runs) andwork only in this
energy range, as otherwise the flatness criterionwould never be
fulfilled.

We also note, that for this original choice of variation of the mod-
ification factor (which is exponential as a function of simulation
time) it can be shown that the method approximates the true den-
sity of states but the final error is bounded frombelow, irrespective
of the CPU time effort. The value of the bound can be reduced by
increasing c towards one, but at an unsustainable cost in CPU time.
This led to the suggestion [26,27] to only use the original version
up to a certain level n0 and then change to ln f ∼ 1/t , where t is
the simulation time. We discuss the reason for this in the context
of the SAMC method.

The mathematical foundations of SAMC were discussed by
Liang et al. in two publications [29,30].Wewill present themethod
here in a notation adapted to our above discussion of WLMC and
ignoring mathematical special cases which are not relevant for
our discussion in Section 4. Assume an energy interval [Emin, Emax]

which can be larger than the admissible energy range of the model
system, specifically one can choose Emin < Egs, where Egs is the
ground state of the model. We further assume that we have a set
ofM discrete energy states, either because they are intrinsic to the
model or becausewe have performed a numerically necessary bin-
ning of adjacent energies when the model has a continuous vari-
ation of admissible energies. Let γt now denote the modification
factor for our estimate for the logarithm of the density of states,
which we denote by ln[g̃(E)]. We furthermore introduce a desired
sampling probability p∗(E) for the energies in [Emin, Emax] with

Emax
Emin

p∗(E) = 1. (2)

The SAMC update then is

ln[g̃(E)] = ln[g̃(E)] + γt

δE,Enew − p∗(E)


, (3)

so p∗(E) is subtracted in each update for all E, and only for the new
energy, Enew, accepted in theMonte Carlo procedure, themodifica-
tion factor γt is added to ln[g̃(Enew)]. The following two necessary
conditions exist for this method to converge:

∞
t=1

γt = ∞ (4)

∞
t=1

γ ν
t < ∞ for some ν ∈ (1, 2). (5)

The first of these conditions is violated by the original update ver-
sion [1,2] of WLMCwhich explains its lack of convergence, but it is
fulfilled in the modified update [26,27]. The SAMC update scheme
converges in the following form

ln[g̃(E)] → ln[g(E)] + C − ln[p∗(E) + Φ] E ∈ {E}adm (6)

ln[g̃(E)] → 0 E ∉ {E}adm, (7)

where {E}adm is the set of admissible energy values of the model
and C is an undetermined constant. If we let M0 be the number of
energy states in the chosen energy interval which are not admissi-
ble energy states of the model, then

Φ =
1

M − M0


E∉{E}adm

p∗(E). (8)

The sampling frequency we introduced, p∗(E), defines the visita-
tion probability of the different energy states when the procedure
converges, i.e., one should have

H(E)
E

H(E)
→ p∗(E) E ∈ {E}adm. (9)

Analytically, the choice of p∗(E) is arbitrary, the method converges
for all choices in the limit of infinite simulation time. Numerically,
however, different choices may prove more or less efficient. We
will discuss two choices in the results section. To make contact
with the WLMCmethod we have to consider a flat sampling of the
energy interval, p∗(E) = 1/M . Then we have from Eq. (6)

ln[g̃(E)] → ln[g(E)] + C ′ (10)

where we have subsumed all constants on the right side into one
constant C ′. Since ln[g(E)] can only be determined up to an un-
known constant anyhow, this is the approximation idea of the
WLMC method. A discussion of the convergence of WLMC there-
fore should not be performed within the context of Markov chain
Monte Carlomethods and detailed balance conditions, but as a spe-
cial case of SAMC.

In our simulations, wewill employ amodification factor similar
to the one suggested by Liang et al. [29,30]

γt = γ0
t0

max(t0, t)
, (11)

where we have introduced a scale factor γ0 compared to their
suggestion. This modification factor has a 1/t time dependence for
late times and therefore leads to a convergent algorithm. As a final
note, let us state here that for SAMC we have:

• The run time is predictable from the choice of parameters and
Monte Carlo moves.

• The admissible energy range of the model does not need to be
known before hand.



Download English Version:

https://daneshyari.com/en/article/502477

Download Persian Version:

https://daneshyari.com/article/502477

Daneshyari.com

https://daneshyari.com/en/article/502477
https://daneshyari.com/article/502477
https://daneshyari.com

