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a b s t r a c t

In this paper we study topological and dynamical features of isolated invariant
continua of continuous flows defined on surfaces. We show that near an isolated
invariant continuum the flow is topologically equivalent to a C1 flow. We deduce
that isolated invariant continua in surfaces have the shape of finite polyhedra. We
also show the existence of regular isolating blocks of isolated invariant continua
and we use them to compute their Conley index provided that we have some
knowledge about the truncated unstable manifold. We also see that the ring structure
cohomology index of an isolated invariant continuum in a surface determines its
Conley index. In addition, we study the dynamics of non-saddle sets, preservation
of topological and dynamical properties by continuation and we give a topological
classification of isolated invariant continua which do not contain fixed points and,
as a consequence, we also classify isolated minimal sets.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study topological and dynamical features of isolated invariant continua of continuous
flows ϕ : M × R → M defined on surfaces. By a surface M we mean a connected 2-manifold without
boundary. To avoid trivial cases, when we refer to an isolated invariant continuum K, it will be implicit that
it is a proper subset of M , i.e. ∅ ≠ K ( M .

The paper is structured as follows. In Section 2 we show that near an isolated invariant continuum K

the flow is topologically equivalent to a C1 flow and, as a consequence, K admits a basis of neighborhoods
comprised of what we call isolating block manifolds. The main result of this section is Theorem 7 which
establishes that an isolated invariant continuum K of a flow on a surface must have the shape of a finite
polyhedron. Besides, we characterize the initial sections of the truncated unstable manifold Wu(K) − K
introduced in [3]. Section 3 is devoted to prove the main results of the paper which are Theorem 12 where the
existence of the so-called regular isolating blocks of isolated invariant continua on surfaces is established and
Theorem 16 which establishes a complete classification of the possible values taken by the Conley index of K.
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In particular, it is proven that the Conley of K is the pointed homotopy type of a wedge of circumferences
if K is neither an attractor nor a repeller, the pointed homotopy type of a disjoint union of a wedge of
circumferences and an external point (which is the base point) if K is an attractor and the pointed homotopy
of a wedge of circumferences and a closed surface if K is a repeller. Both the number of circumferences in the
wedge and the corresponding genus of the surface in the case of repellers are determined by the first Betti
number of K and the knowledge of an initial section of Wu(K)−K. The existence of regular isolating blocks
plays a key role in our proof of this classification. In Section 4 we prove Theorem 19 which is a classification
of the Conley index of K in terms of the ring structure of the cohomology index. Finally, Section 5 is
devoted to some applications of the previous results. The main results of this section are Theorems 26 and
29. Theorem 26 studies the preservation of some topological and dynamical properties by continuation. For
instance, it is proven that if (Kλ)λ∈I is a continuation of an attractor (resp. repeller) K0 then, for each λ, Kλ
must have a component K1

λ which is an attractor (resp. repeller) with the same shape of K0. It is also proven
that the property of being saddle is preserved by continuation for small values of the parameter and that if Kλ
is a continuum for each λ, the property of being non-saddle is preserved if and only if the shape is preserved.
On the other hand, Theorem 29 establishes that if an isolated invariant continuum in a surface does not have
fixed points it must be non-saddle and either a limit cycle, a closed annulus bounded by two limit cycles or
a Möbius strip bounded by a limit cycle. A nice consequence of this result is Corollary 30 which establishes
that a minimal isolated invariant continuum in a surface must be either a fixed point or a limit cycle.

We shall use through the paper the standard notation and terminology in the theory of dynamical
systems. By the omega-limit of a set X ⊂ M we understand the set ω(X) =


t>0 X · [t,∞) while

the negative omega-limit is the set ω∗(X) =

t>0 X · (−∞,−t]. The unstable manifold of an invariant

compactum K is defined as the set Wu(K) = {x ∈ M | ∅ ≠ ω∗(x) ⊂ K}. Similarly the stable manifold
W s(K) = {x ∈ M | ∅ ≠ ω(x) ⊂ K}. For us, an attractor is an asymptotically stable compactum and a
repeller is an asymptotically stable compactum for the reverse flow.

We shall assume in the paper some knowledge of the Conley index theory of isolated invariant compacta
of flows. These are compact invariant sets K which possess a so-called isolating neighborhood, that is, a
compact neighborhood N such that K is the maximal invariant set in N , or setting

N+ = {x ∈ N : x[0,+∞) ⊂ N}; N− = {x ∈ N : x(−∞, 0] ⊂ N};

such that K = N+ ∩ N−. We shall make use of a special type of isolating neighborhoods, the so-called
isolating blocks, which have good topological properties. More precisely, an isolating block N is an isolating
neighborhood such that there are compact sets N i, No ⊂ ∂N , called the entrance and exit sets, satisfying

1. ∂N = N i ∪No,
2. for every x ∈ N i there exists ε > 0 such that x[−ε, 0) ⊂M −N and for every x ∈ No there exists δ > 0

such that x(0, δ] ⊂M −N ,
3. for every x ∈ ∂N −N i there exists ε > 0 such that x[−ε, 0) ⊂ N̊ and for every x ∈ ∂N −No there exists
δ > 0 such that x(0, δ] ⊂ N̊ .

These blocks form a neighborhood basis of K in M . Associated to an isolating block N there are defined
two continuous functions

ts : N −N+ → [0,+∞), ti : N −N− → (−∞, 0]

given by

ts(x) := sup{t ≥ 0 | x[0, t] ⊂ N}, ti(x) := inf{t ≤ 0 | x[t, 0] ⊂ N}.

These functions are known as the exit time and the entrance time respectively. We shall also use the
notation n+ = N+ ∩ ∂N and n− = N− ∩ ∂N . If the flow is differentiable, the isolating blocks can
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