

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

On the classification and evolution of bifurcation curves for a one-dimensional prescribed curvature problem with nonlinearity $\exp(\frac{au}{a+u})$

Yan-Hsiou Cheng^{a,*}, Kuo-Chih Hung^b, Shin-Hwa Wang^c

- ^a Department of Mathematics and Information Education, National Taipei University of Education, Taipei 106, Taiwan
- ^b Fundamental General Education Center, National Chin-Yi University of Technology, Taichung 411, Taiwan
- ^c Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

ARTICLE INFO

Article history: Received 25 March 2016 Accepted 22 August 2016 Communicated by S. Carl

MSC: 34B18 74G35

Keywords:
Prescribed curvature problem
Exact multiplicity
Positive solution
Bifurcation curve
Time map

ABSTRACT

We study the classification and evolution of bifurcation curves of positive solutions u for the one-dimensional prescribed curvature problem

$$\begin{cases} -\left(\frac{u'(x)}{\sqrt{1+\left(u'(x)\right)^2}}\right)' = \lambda \exp\left(\frac{au}{a+u}\right), & -L < x < L, \\ u(-L) = u(L) = 0, & \end{cases}$$

where $\lambda>0$ is a bifurcation parameter, and L,a>0 are two evolution parameters. We prove that, on $(\lambda, \|u\|_{\infty})$ -plane, for $0< a \leq 36/17\approx 2.118$, the bifurcation curve is \supset -shaped. While for a>36/17, the bifurcation curve is \supset -shaped or reversed ε -like shaped. In particular, for $a>a^{**}\approx 4.107$, the bifurcation curve is (i) \supset -shaped if L>0 small enough and (ii) reversed ε -like shaped if L is large enough.

 \odot 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the classification and evolution of bifurcation curves of positive solutions $u \in C^2(-L, L) \cap C[-L, L]$ for the one-dimensional prescribed curvature problem

$$\begin{cases}
-\left(\frac{u'(x)}{\sqrt{1 + (u'(x))^2}}\right)' = \lambda f(u), & -L < x < L, \\
u(-L) = u(L) = 0,
\end{cases}$$
(1.1)

^{*} Corresponding author.

 $[\]label{lem:condition} \textit{E-mail addresses:} \ \ \text{yhcheng@tea.ntue.edu.tw} \ \ (\text{Y.-H. Cheng}), \ \ \text{kchung@ncut.edu.tw} \ \ (\text{K.-C. Hung}), \ \ \text{shwang@math.nthu.edu.tw} \ \ \ (\text{S.-H. Wang}).$

where $\lambda > 0$ is a bifurcation parameter, L > 0 is an evolution parameter and the nonlinearity

$$f(u) \equiv \exp\left(\frac{au}{a+u}\right), \quad a > 0.$$
 (1.2)

This nonlinearity f(u) satisfies f(0) = 1, f'(u) > 0 on $[0, \infty)$, $\lim_{u \to \infty} f(u) = \exp(a) > 0$. In addition,

- 1. if $a \leq 2$, then f is concave on $(0, \infty)$;
- 2. if a > 2, then f is convex-concave on $(0, \infty)$. More precisely, f is convex on $(0, \gamma)$ and concave on (γ, ∞) where $\gamma = a(a-2)/2 > 0$ is the unique inflection point of f.

The one-dimensional prescribed curvature problem

$$\begin{cases}
-\left(\frac{u'(x)}{\sqrt{1 + (u'(x))^2}}\right)' = \lambda \tilde{f}(u), & -L < x < L, \\
u(-L) = u(L) = 0,
\end{cases}$$
(1.3)

and n-dimensional problem of it, with general nonlinearity $\tilde{f}(u)$ or with many different types nonlinearities, like $\exp(u)$, $\exp(u) - 1$, $\exp\left(\frac{au}{a+u}\right) - 1$, $(1+u)^p$ (p>0), u^p (p>0), a^u (a>0), $u-u^3$, $(1-u)^{-p}$ (p>0) and $u^p + u^q$ $(0 \le p < q < \infty)$ have been recently investigated by many authors, see e.g. [1,3,4,7-11,14,17,19,21-23,26,27,25,29,28,30,31,33]. Note that, in geometry, a solution u(x) of (1.3) is also called a graph of prescribed curvature $\lambda \tilde{f}(u)$.

A solution $u \in C^2(-L,L) \cap C[-L,L]$ of (1.3) with $u' \in C([-L,L],[-\infty,\infty])$ is called classical if $|u'(\pm L)| < \infty$, and it is called non-classical if $u'(-L) = \infty$ or $u'(L) = -\infty$, see [21,27]. In this paper, we always allow that solutions $u \in C^2(-L,L) \cap C[-L,L]$ satisfy $u' \in C([-L,L],[-\infty,\infty])$. Notice that it can be shown that (see [4,27]), for problem (1.3),

(i) Any non-trivial solution $u \in C^2(-L, L) \cap C[-L, L]$ is concave and positive on (-L, L) if $\tilde{f}(u) > 0$ for u > 0 since the equation in (1.3) can be written in the equivalent form

$$u''(x) = -\lambda (1 + u'^2)^{3/2} \tilde{f}(u) < 0$$
 on $(-L, L)$.

- (ii) A positive solution $u \in C^2(-L, L) \cap C[-L, L]$ must be symmetric on [-L, L] if $\tilde{f} : [0, \infty) \to [0, \infty)$ is a continuous function satisfying $\tilde{f}(u) > 0$ for u > 0. Thus u'(-L) = -u'(+L).
- (iii) A classical solution $u \in C^2(-L, L) \cap C[-L, L]$ with $u' \in C([-L, L], [-\infty, \infty])$ belongs to $C^2[-L, L]$.
- (iv) A non-classical solution $u \in C^2(-L, L) \cap C[-L, L]$ with $u' \in C([-L, L], [-\infty, \infty])$ satisfies $|u'(\pm L)| = \infty$ by symmetry of positive solutions u of (1.3) if \tilde{f} is a continuous, positive function.

We define the bifurcation curve C_a of (1.1), (1.2) by

$$C_a \equiv \left\{ (\lambda, \|u_\lambda\|_\infty) : \lambda > 0 \text{ and } u_\lambda \text{ is a positive solution of } (1.1), (1.2) \right\}.$$

We say that, on the $(\lambda, \|u\|_{\infty})$ -plane, the bifurcation curve C_a is \supset -shaped (see e.g. Fig. 3 depicted below) if there exists $\lambda^* > 0$ such that C_a has exactly one turning point at $(\lambda^*, \|u_{\lambda^*}\|_{\infty})$ where the bifurcation curve C_a turns to the left. In addition, we say that the bifurcation curve C_a is reversed ε -shaped (see e.g. Fig. 9(ii-1)-(ii-11) depicted below) if C_a has turning points at some points $(\lambda_1, \|u_{\lambda_1}\|_{\infty})$, $(\lambda_2, \|u_{\lambda_2}\|_{\infty})$ and $(\lambda_3, \|u_{\lambda_3}\|_{\infty})$ satisfying

- (i) $\lambda_1 > \lambda_2$ and $\lambda_3 > \lambda_2$;
- (ii) $||u_{\lambda_1}||_{\infty} < ||u_{\lambda_2}||_{\infty} < ||u_{\lambda_3}||_{\infty};$

Download English Version:

https://daneshyari.com/en/article/5024788

Download Persian Version:

https://daneshyari.com/article/5024788

<u>Daneshyari.com</u>