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a b s t r a c t

We study the local regularity of vectorial minimizers of integral functionals with
standard p-growth. We assume that the non-homogeneous densities are uniformly
convex and have a radial structure, with respect to the gradient variable, only at
infinity. Under a W 1,n-Sobolev dependence on the spatial variable of the integrand,
n being the space dimension, we show that the minimizers have the gradient locally
in Lq for every q > p. As a consequence, they are locally α-Hölder continuous for
every α < 1.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study the regularity of vectorial local minimizers of functionals with irregular integrands
in the x-variable and only asymptotically convex with respect to the gradient variable. In order to state our
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result precisely, we introduce right now our hypotheses. We will consider

F(u; Ω) :=

Ω

f(x,Du) dx, (1.1)

where Ω ⊂ Rn, n > 2, is a bounded open set, u : Ω → RN , N > 1, is a Sobolev map and
f : Ω × RnN → [0,+∞) is a Carathéodory function convex with respect to the second variable.

As it is well known since the famous example by De Giorgi [13] (see also [39,40,45]), in order to avoid the
irregularity phenomena peculiar of the vectorial minimizers, the dependence of the energy density on the
modulus of the gradient variable is necessary. We shall assume it only at infinity, i.e., for large values of the
gradient variable ξ. Precisely:

(A1) there exist R̃ > 0 and a function f̃ : Ω × [R̃,+∞)→ [0,+∞) such that

f(x, ξ) = f̃(x, |ξ|), (1.2)

for a.e. x ∈ Ω and every ξ ∈ RnN \BR̃(0).

The integrand f will satisfy the so-called p-growth condition, that is

(A2) there exist an exponent p > 1 and constants c1, c2, L > 0 such that

c1|ξ|p − c2 ≤ f(x, ξ) ≤ L(1 + |ξ|)p,

for a.e. x ∈ Ω and ξ ∈ RnN .

The usual p-uniform convexity will be assumed only at infinity. More precisely, we shall suppose that
ξ → f(x, ξ) ∈ C2(RnN \BR̃(0)) and

(A3) there exists ν > 0 such that

⟨Dξξf(x, ξ)λ, λ⟩ ≥ ν (1 + |ξ|)p−2|λ|2,

for a.e. x ∈ Ω , for every ξ ∈ RnN \BR̃(0) and for every λ ∈ RnN .

Note that, since f is C2 with respect to the gradient variable outside the ball BR̃(0), the assumption in (A3)
is equivalent to the C2- asymptotic convexity introduced in [5].

Also the bound on the second order derivatives in the gradient variable will be required only at infinity.
Indeed, we shall assume that

(A4) there exists L1 > 0 such that

|Dξξf(x, ξ)| ≤ L1(1 + |ξ|)p−2,

for a.e. x ∈ Ω and every ξ ∈ RnN \BR̃(0).

We now introduce the main property of our energy density. As already mentioned, we will not ask a
regular dependence of f on the x-variable. Indeed, the function x→ Dξf(x, ξ) will be required to be weakly
differentiable for every ξ ∈ RnN \BR̃(0) and it will be assumed that
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