ARTICLE IN PRESS

Nonlinear Analysis 🛚 (

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Rigidity and stability of Caffarelli's log-concave perturbation theorem

Guido De Philippis^{a,*}, Alessio Figalli^b

^a SISSA, Via Bonomea 265, 34136 Trieste, Italy
^b ETH Zürich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland

ARTICLE INFO

Article history: Received 31 May 2016 Accepted 6 October 2016 Communicated by Enzo Mitidieri To Nicola Fusco, for his 60th birthday, con affetto e ammirazione

Keywords: Optimal transport Log Concave measures

1. Introduction

Let γ_n denote the centered Gaussian measure in \mathbb{R}^n , i.e., $\gamma_n = (2\pi)^{-n/2} e^{-|x|^2/2} dx$, and let μ be a probability measure on \mathbb{R}^n . By a classical theorem of Brenier [2], there exists a convex function $\varphi : \mathbb{R}^n \to \mathbb{R}$ such that $T = \nabla \varphi : \mathbb{R}^n \to \mathbb{R}^n$ transports γ_n onto μ , i.e., $T_{\sharp} \gamma_n = \mu$, or equivalently

$$\int h \circ T \, d\gamma_n = \int h \, d\mu \quad \text{for all continuous and bounded functions } h \in C_b(\mathbb{R}^n) \ .$$

In the sequel we will refer to T as the Brenier map from γ_n to μ .

In [4,5] Caffarelli proved that if μ is "more log-concave" than γ_n , then T is 1-Lipschitz, that is, all the eigenvalues of $D^2\varphi$ are bounded from above by 1. Here is the exact statement:

Theorem 1.1 (Caffarelli). Let γ_n be the Gaussian measure in \mathbb{R}^n , and let $\mu = e^{-V} dx$ be a probability measure satisfying $D^2 V \geq \mathrm{Id}_n$. Consider the Brenier map $T = \nabla \varphi$ from γ_n to μ . Then T is 1-Lipschitz. Equivalently, $0 \leq D^2 \varphi(x) \leq \mathrm{Id}_n$ for a.e. x.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.na.2016.10.006} 0362-546 X @ 2016 Elsevier Ltd. All rights reserved.$

Please cite this article in press as: G. De Philippis, A. Figalli, Rigidity and stability of Caffarelli's log-concave perturbation theorem, Nonlinear Analysis (2016), http://dx.doi.org/10.1016/j.na.2016.10.006

ABSTRACT

In this note we establish some rigidity and stability results for Caffarelli's log-concave perturbation theorem. As an application we show that if a 1-log-concave measure has almost the same Poincaré constant as the Gaussian measure, then it almost splits off a Gaussian factor.

@ 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: guido.dephilippis@sissa.it (G. De Philippis), alessio.figalli@math.ethz.ch (A. Figalli).

ARTICLE IN PRESS

G. De Philippis, A. Figalli / Nonlinear Analysis 🛛 (

This theorem allows one to show that optimal constants in several functional inequalities are extremized by the Gaussian measure. More precisely, let F, G, H, L, J be continuous functions on \mathbb{R} and assume that F, G, H, J are nonnegative, and that H and J are increasing. For $\ell \in \mathbb{R}_+$ let

$$\lambda(\mu, \ell) \coloneqq \inf \left\{ \frac{H\left(\int J(|\nabla u|) \, d\mu\right)}{F\left(\int G(u) \, d\mu\right)} : u \in \operatorname{Lip}(\mathbb{R}^n), \int L(u) \, d\mu = \ell \right\}.$$
(1.1)

Then

$$\lambda(\gamma_n, \ell) \le \lambda(\mu, \ell). \tag{1.2}$$

Indeed, given a function u admissible in the variational formulation for μ , we set $v := u \circ T$ and note that, since $T_{\sharp}\gamma_n = \mu$,

$$\int K(v) \, d\gamma_n = \int K(u \circ T) \, d\gamma_n = \int K(u) \, d\mu \quad \text{for } K = G, L.$$

In particular, this implies that v is admissible in the variational formulation for γ_n . Also, thanks to Caffarelli's Theorem,

$$|\nabla v| \le |\nabla u| \circ T |\nabla T| \le |\nabla u| \circ T,$$

therefore

$$H\left(\int J(|\nabla v|) \, d\gamma_n\right) \le H\left(\int J(|\nabla u|) \circ T \, d\gamma_n\right) = H\left(\int J(|\nabla u|) \, d\mu\right).$$

Thanks to these formulas, (1.2) follows easily.

Note that the classical Poincaré and Log-Sobolev inequalities fall in the above general framework. For instance, choosing H(t) = F(t) = L(t) = t, $\ell = 0$, and $J(t) = F(t) = |t|^p$ with $p \ge 1$, we deduce that

$$\inf\left\{\frac{\int |\nabla u|^p \, d\mu}{\int |u|^p \, d\mu} : u \in \operatorname{Lip}(\mathbb{R}^n), \int u \, d\mu = 0\right\} \ge \inf\left\{\frac{\int |\nabla u|^p \, d\gamma_n}{\int |u|^p \, d\gamma_n} : u \in \operatorname{Lip}(\mathbb{R}^n), \int u \, d\gamma_n = 0\right\}.$$
(1.3)

Two questions that naturally arise from the above considerations are:

- *Rigidity*: What can be said about μ when $\lambda(\mu, \ell) = \lambda(\gamma_n, \ell)$?
- Stability: What can be said about μ when $\lambda(\mu, \ell) \approx \lambda(\gamma_n, \ell)$?

Looking at the above proof, these two questions can usually be reduced to the study of the corresponding ones concerning the optimal map T in Theorem 1.1 (here |A| denotes the operator norm of a matrix A):

- Rigidity: What can be said about μ when $|\nabla T(x)| = 1$ for a.e. x?
- Stability: What can be said about μ when $|\nabla T(x)| \approx 1$ (in suitable sense)?

Our first main result states that if $|\nabla T(x)| = 1$ for a.e. x then μ "splits off" a Gaussian factor. More precisely, it splits off as many Gaussian factors as the number of eigenvalues of $\nabla T = D^2 \varphi$ that are equal to 1. In the following statement and in the sequel, given $p \in \mathbb{R}^k$ we denote by $\gamma_{p,k}$ the Gaussian measure in \mathbb{R}^k with barycenter p, that is, $\gamma_{p,k} = (2\pi)^{-k/2} e^{-|x-p|^2/2} dx$.

Theorem 1.2 (Rigidity). Let γ_n be the Gaussian measure in \mathbb{R}^n , and let $\mu = e^{-V}dx$ be a probability measure with $D^2V \geq \mathrm{Id}_n$. Consider the Brenier map $T = \nabla \varphi$ from γ_n to μ , and let

$$0 \le \lambda_1(D^2\varphi(x)) \le \dots \le \lambda_n(D^2\varphi(x)) \le 1$$

 $Please \ cite \ this \ article \ in \ press \ as: \ G. \ De \ Philippis, \ A. \ Figalli, \ Rigidity \ and \ stability \ of \ Caffarelli's \ log-concave \ perturbation \ theorem, \ Nonlinear \ Analysis \ (2016), \ http://dx.doi.org/10.1016/j.na.2016.10.006$

Download English Version:

https://daneshyari.com/en/article/5024799

Download Persian Version:

https://daneshyari.com/article/5024799

Daneshyari.com