ARTICLE IN PRESS

Nonlinear Analysis I (IIII) III-III

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

On formulae decoupling the total variation of BV functions

Augusto C. Ponce^a, Daniel Spector^{b,*}

ARTICLE INFO

Article history: Received 29 March 2016 Accepted 31 August 2016 Communicated by Enzo Mitidieri To Nicola Fusco, a master of BV, on

the occasion of his sixtieth birthday

Keywords:
Bounded variation
Fractional Laplacian
Non-local energies

ABSTRACT

In this paper we prove several formulae that enable one to capture the singular portion of the measure derivative of a function of bounded variation as a limit of non-local functionals. One special case shows that rescalings of the fractional Laplacian of a function $u \in SBV$ converge strictly to the singular portion of Du.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let $\Omega \subset \mathbb{R}^N$ be an open, bounded and smooth subset (or all of \mathbb{R}^N) and u be a function of bounded variation in Ω , i.e. $u \in L^1(\Omega)$ and its distributional derivative Du is a Radon measure with finite total variation

$$|Du|(\Omega) := \sup_{\substack{\Phi \in C_c^1(\Omega; \mathbb{R}^N), \\ \|\Phi\|_{L^{\infty}(\Omega; \mathbb{R}^N)} \le 1}} \int_{\Omega} u \operatorname{div} \Phi.$$
(1.1)

The space of such functions $BV(\Omega)$ contains the Sobolev space $W^{1,1}(\Omega)$, with strict inclusion, since in general for $u \in BV(\Omega)$ one has the decomposition of the measure

$$Du = \nabla u \mathcal{L}^N + D^s u.$$

where ∇u is the Radon-Nikodym density of Du with respect to the N-dimensional Lebesgue measure \mathcal{L}^N and $D^s u$ is singular with respect to \mathcal{L}^N . In particular, $u \in W^{1,1}(\Omega)$ precisely when $D^s u \equiv 0$.

E-mail addresses: Augusto.Ponce@uclouvain.be (A.C. Ponce), dspector@math.nctu.edu.tw (D. Spector).

http://dx.doi.org/10.1016/j.na.2016.08.028

 $0362\text{-}546\mathrm{X}/\odot$ 2016 Elsevier Ltd. All rights reserved.

Please cite this article in press as: A.C. Ponce, D. Spector, On formulae decoupling the total variation of BV functions, Nonlinear Analysis (2016), http://dx.doi.org/10.1016/j.na.2016.08.028

^a Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, L7.01.02, 1348 Louvain-la-Neuve, Belgium

^b National Chiao Tung University, Department of Applied Mathematics, Hsinchu, Taiwan

^{*} Corresponding author.

While the computation of the total variation (1.1) through the theory of distributions is classical, in recent years there has been an interest in its – and other related energies – approximation through the asymptotics of non-local functionals [1,4-7,9,11,12,17,14,18,20,22,24,23,25,26]. For example, Bourgain, Brezis and Mironescu [7] had shown that for $u \in W^{1,p}(\Omega)$, 1 , one has

$$\lim_{\alpha \to 1^{-}} (1 - \alpha) \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{N + \alpha p}} \, \mathrm{d}y \, \mathrm{d}x = C_{p,N} \int_{\Omega} |\nabla u|^p. \tag{1.2}$$

Here, for p = 1,

$$C_{1,N} = \int_{S^{N-1}} |e \cdot v| \, d\mathcal{H}^{N-1}(v) = 2\omega_{N-1},$$

where $e \in \mathbb{R}^N$ is any unit vector and ω_{N-1} is the volume of the unit ball in \mathbb{R}^{N-1} . Formula (1.2) expresses the fact that appropriately scaled Gagliardo semi-norms tend to the total variation as the differential parameter tends to one. Their result includes the case $u \in W^{1,1}(\Omega)$, while for general $u \in BV(\Omega)$ it was proved by Dávila [15, Theorem 1] that

$$\lim_{\alpha \to 1^{-}} (1 - \alpha) \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|}{|x - y|^{N + \alpha}} \, \mathrm{d}y \, \mathrm{d}x = C_{1,N} |Du|(\Omega). \tag{1.3}$$

The Gagliardo semi-norms can be thought heuristically as the energy of derivatives of fractional order $\alpha \in (0,1)$, while the space of *p*-integrable functions for which they are finite coincides with the $W^{\alpha,p}$ space obtained by real interpolation of L^p and $W^{1,p}$ with parameter α . Indeed, it was subsequently shown by Milman [24] that the convergence (1.2) can be alternatively deduced from the theory of interpolation.

In the complex interpolation between L^p and $W^{1,p}$ when $\Omega = \mathbb{R}^N$, one classically sees the fractional Laplacian

$$(-\Delta)^{\alpha/2}u(x) := c_{\alpha} \int_{\mathbb{R}^{N}} \frac{u(x) - u(y)}{|x - y|^{N + \alpha}} dy$$

filling the role of the differential object of order $\alpha \in (0,1)$, and even in a more extended range, though with a different formula. The constant

$$c_{\alpha} = \frac{2^{\alpha - 1} \alpha \Gamma\left(\frac{N + \alpha}{2}\right)}{\pi^{\frac{N}{2}} \Gamma\left(\frac{2 - \alpha}{2}\right)}$$

ensures that the Fourier transform of the fractional Laplacian satisfy $(-\widehat{\Delta})^{\alpha/2}u(\xi) = (2\pi|\xi|)^{\alpha}\widehat{u}(\xi)$.

As integer powers of the Laplacian can also be understood from the framework of the functional calculus, the natural limits here are $\alpha=0$ and $\alpha=2$. This observation is supported by the trivial convergence, as α tends to 1, of the energies

$$\lim_{\alpha \to 1^{-}} (1 - \alpha) \int_{\mathbb{R}^{N}} \left| \int_{\mathbb{R}^{N}} \frac{u(x) - u(y)}{|x - y|^{N + \alpha}} \, \mathrm{d}y \right|^{p} \, \mathrm{d}x = 0, \tag{1.4}$$

whenever $u \in W^{1,p}(\mathbb{R}^N)$ and $p \geq 1$. The case p > 1 follows from the L^p boundedness of the Riesz transforms that yields the equivalence between the quantities $\|\nabla u\|_{L^p(\mathbb{R}^N)}$ and $\|(-\Delta)^{1/2}u\|_{L^p(\mathbb{R}^N)}$; see e.g. [19, Lemma 3.6]. The case p = 1 requires a different argument that can be found in [27,28], based on the approximation of u by smooth functions. Alternatively, one can still obtain the expected energy, in the spirit of (1.2), via a non-local gradient approach [23].

What is perhaps surprising is that the convergence (1.4) is no longer true for general $u \in BV(\Omega)$ and p = 1. For example, in the case where $u = \chi_A$ is the characteristic function of a set of finite perimeter, Dávila's formula (1.3) and the straightforward integral identity

$$\int_{\mathbb{R}^N} \left| \int_{\mathbb{R}^N} \frac{\chi_A(x) - \chi_A(y)}{|x - y|^{N + \alpha}} \, \mathrm{d}y \right| \, \mathrm{d}x = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|\chi_A(x) - \chi_A(y)|}{|x - y|^{N + \alpha}} \, \mathrm{d}y \, \mathrm{d}x,\tag{1.5}$$

Download English Version:

https://daneshyari.com/en/article/5024808

Download Persian Version:

https://daneshyari.com/article/5024808

Daneshyari.com