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a b s t r a c t

This paper shows that the strong solution to the compressible Navier–Stokes
equation around spatially periodic stationary solution in a periodic layer of Rn(n =
2, 3) exists globally in time if Reynolds and Mach numbers are sufficiently small. It
is proved that the asymptotic leading part of the perturbation is given by a solution
to the one-dimensional viscous Burgers equation multiplied by a spatially periodic
function when n = 2, and by a solution to the two-dimensional heat equation
multiplied by a spatially periodic function when n = 3.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies the stability of stationary solutions to the compressible Navier–Stokes equation

∂tρ+ div(ρv) = 0, (1.1)
ρ(∂tv + (v · ∇)v)− µ∆v − (µ+ µ′)∇div v +∇p(ρ) = ρg (1.2)

in a periodic layer Ω∗ of Rn with n = 2, 3:

Ω∗ = {x = (x′, xn);x′ = (x1, . . . , xn−1) ∈ Rn−1, ω∗,1(x′) < xn < ω∗,2(x′)}.

Here ω∗,1 and ω∗,2 are smooth Q∗-periodic functions in x′ with the periodic cell Q∗ =
n−1
j=1 [− π

α∗,j
, πα∗,j )

for constants α∗,j > 0 (j = 1, . . . , n − 1), namely, ω∗,1 and ω∗,2 are smooth functions satisfying
ω∗,j(x′ + 2π

αi
e′i) = ω∗,j(x′) (i = 1, . . . , n − 1, j = 1, 2) with e′i = ⊤(0, . . . ,

i
1, . . . , 0) ∈ Rn−1; ρ = ρ(x, t)

and v = ⊤(v1(x, t), . . . , vn(x, t)) denote the unknown density and velocity, respectively, at x ∈ Ω∗ and t ≥ 0;
p = p(ρ) is the pressure that is assumed to be a smooth function of ρ satisfying

p′(ρ∗) > 0
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for a given constant ρ∗ > 0; g = ⊤(g1(x), . . . , gn(x)) is a given external force. Here and in what follows the
superscript ⊤· stands for the transposition. µ and µ′ are the viscosity coefficients that are assumed to be
constants satisfying µ > 0, 2

nµ+ µ′ ≥ 0. We assume that µ
′

µ satisfies

µ′

µ
≤ µ1 (1.3)

for a certain constant µ1 > 0. We also assume that g = ⊤(g1(x), . . . , gn(x)) is Q∗-periodic in x′.
In [8,29], it was shown that if g is sufficiently small, then the system (1.1)–(1.2) under the boundary

condition

v|xn=ω∗,j(x′) = 0 (x′ ∈ Rn−1, j = 1, 2) (1.4)

has a Q∗-periodic stationary solution us = ⊤(ρs, vs) whose components ρs and vs are in general non-uniform
in x′ and xn.

The purpose of this paper is to prove the nonlinear stability of us when the Reynolds and Mach numbers
are sufficiently small.

The global existence of strong solutions of the multi-dimensional compressible Navier–Stokes equations
was proved by Matsumura and Nishida [22–24] around the motionless state us = ⊤(ρ∗, 0) when the under-
lying domain is the whole space, half space and exterior domains. After their pioneering works, large time
behavior of solutions around the motionless state in unbounded domains has been investigated in detail. See,
e.g.,
[7,9,13,17–19,21,22,24,27] for the cases of multi-dimensional whole space, half space and exterior domains.
On the other hand, the study of behavior of solutions around stationary solution us = ⊤(ρs, vs) with non-
uniform velocity vs is still under development. A difficulty in the mathematical analysis appears due to the
non-uniform velocity field of stationary flows which makes the hyperbolic aspect of Eqs. (1.1)–(1.2) stronger,
and thus, the stability analysis is getting more difficult compared with that of the motionless state. As for
the stability of stationary flow with non-uniform velocity field on the whole space, we mention that Shibata
and Tanaka [26,27] proved the existence and the stability of stationary solutions for small external forces
and established the decay rate of perturbations. See also [16,20,28] for the stability of time-periodic solutions
on the whole space. Kagei and others [10,15] studied the stability of parallel flows in a flat layer which are
simple flows with non-uniform velocities. It was proved that parallel flow is asymptotically stable for small
initial perturbations if the Reynolds and Mach numbers are sufficiently small, and a detailed asymptotic
description of the large time was established. (See also [2,4,3] for parallel flows in a cylindrical domain,
and [5,6] for time-periodic parallel flows.)

In this paper we extend the stability analysis for parallel flows to the one for stationary flows us = ⊤(ρs, vs)
with non-uniform spatially periodic velocity fields vs. In [8], spectral properties of the linearized semigroup
around us = ⊤(ρs, vs) was investigated. (See also [14].) Based on the results in [8] we study the nonlinear
problem in this paper. We show that the large time behavior of the perturbation is described by a solution
of a one-dimensional viscous Burgers equation in the case of n = 2 and by a two-dimensional linear heat
equation in the case of n = 3 provided that the Reynolds and Mach numbers are sufficiently small.

We briefly state the main result of this paper. After introducing suitable non-dimensional variables, the
equations for the perturbation u = ⊤(φ,w) = ⊤(γ2(ρ− ρs), v − vs) take the following form:

∂tφ+ div(φvs) + γ2div(ρsw) = f0, (1.5)

∂tw −
ν

ρs
∆w − ν̃

ρs
∇divw +∇

P ′(ρs)
γ2ρs

φ


+ 1
γ2ρ2
s

(ν∆vs + ν̃∇div vs)φ+ vs · ∇w + w · ∇vs = f̃ , (1.6)

w|∂Ω = 0, (1.7)
u|t=0 = u0 = ⊤(φ0, w0). (1.8)
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