

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Well-posedness, global existence and large time behavior for Hardy–Hénon parabolic equations

Byrame Ben Slimene a,b,*, Slim Tayachi , Fred B. Weissler b

- ^a Université de Tunis El Manar, Faculté des Sciences de Tunis, Département de Mathématiques, Laboratoire Équations aux Dérivées Partielles LR03ES04, 2092 Tunis, Tunisie
- ^b Université Paris 13, Sorbonne Paris Cité, CNRS UMR 7539 LAGA, 99 Avenue Jean-Baptiste Clément 93430 Villetaneuse, France

ARTICLE INFO

Article history: Received 22 August 2016 Accepted 14 December 2016 Communicated by Enzo Mitidieri

MSC: primary 35B40 35B30 35K58 35K67 35K57 secondary 35B33

Keywords:
Hardy-Hénon parabolic equation
Well-posedness
Large time behavior

ABSTRACT

In this paper we study the nonlinear parabolic equation $\partial_t u = \Delta u + a|x|^{-\gamma}|u|^{\alpha}u$, t > 0, $x \in \mathbb{R}^N \setminus \{0\}$, $N \ge 1$, $a \in \mathbb{R}$, $\alpha > 0$, $0 < \gamma < \min(2, N)$ and with initial value $u(0) = \varphi$. We establish local well-posedness in $L^q(\mathbb{R}^N)$ and in $C_0(\mathbb{R}^N)$. In particular, the value $q = N\alpha/(2-\gamma)$ plays a critical role.

For $\alpha > (2-\gamma)/N$, we show the existence of global self-similar solutions with initial values $\varphi(x) = \omega(x)|x|^{-(2-\gamma)/\alpha}$, where $\omega \in L^{\infty}(\mathbb{R}^N)$ is homogeneous of degree 0 and $||\omega||_{\infty}$ is sufficiently small. We then prove that if $\varphi(x) \sim \omega(x)|x|^{-(2-\gamma)/\alpha}$ for |x| large, then the solution is global and is asymptotic in the L^{∞} -norm to a self-similar solution of the nonlinear equation. While if $\varphi(x) \sim \omega(x)|x|^{-\sigma}$ for |x| large with $(2-\gamma)/\alpha < \sigma < N$, then the solution is global but is asymptotic in the L^{∞} -norm to $e^{t\Delta}(\omega(x)|x|^{-\sigma})$.

The equation with more general potential, $\partial_t u = \Delta u + V(x)|u|^{\alpha}u$, $V(x)|x|^{\gamma} \in L^{\infty}(\mathbb{R}^N)$, is also studied. In particular, for initial data $\varphi(x) \sim \omega(x)|x|^{-(2-\gamma)/\alpha}$, |x| large, we show that the large time behavior is linear if V is compactly supported near the origin, while it is nonlinear if V is compactly supported near infinity.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the singular nonlinear parabolic equation

$$\partial_t u = \Delta u + a |\cdot|^{-\gamma} |u|^{\alpha} u, \tag{1.1}$$

 $u=u(t,x)\in\mathbb{R},\ t>0,\ x\in\mathbb{R}^N\setminus\{0\},\ N\geq 1,\ a\in\mathbb{R},\ \alpha>0,\ \gamma>0$ and with initial value

$$u(0) = \varphi. \tag{1.2}$$

^{*} Corresponding author at: Université de Tunis El Manar, Faculté des Sciences de Tunis, Département de Mathématiques, Laboratoire Équations aux Dérivées Partielles LR03ES04, 2092 Tunis, Tunisie.

E-mail addresses: byramebenslimene@yahoo.fr (B. Ben Slimene), slim.tayachi@fst.rnu.tn (S. Tayachi), weissler@math.univ-paris13.fr (F.B. Weissler).

The case $\gamma=0$ corresponds to the standard nonlinear heat equation. For $\gamma<0$ it is known in the literature as a Hénon parabolic equation, while if $\gamma>0$ it is known as a Hardy parabolic equation. In this paper we are concerned with the case $\gamma>0$. We are interested in the well-posedness of (1.1) with initial data $\varphi\in L^q(\mathbb{R}^N)$, $1\leq q<\infty$, and in $C_0(\mathbb{R}^N)$. We also study the existence of global solutions, including self-similar solutions and prove the existence of asymptotically self-similar solutions.

In what follows, we denote $\|.\|_{L^q(\mathbb{R}^N)}$ by $\|.\|_q$, $1 \le q \le \infty$. For all t > 0, $e^{t\Delta}$ denotes the heat semi-group

$$\left(e^{t\Delta}f\right)(x) = \int_{\mathbb{R}^N} G(t, x - y)f(y)dy,\tag{1.3}$$

where

$$G(t,x) = (4\pi t)^{-N/2} e^{-\frac{|x|^2}{4t}}, \quad t > 0, \ x \in \mathbb{R}^N,$$
(1.4)

and $f \in L^q(\mathbb{R}^N)$, $q \in [1, \infty)$ or $f \in C_0(\mathbb{R}^N)$. For $f \in \mathcal{S}'(\mathbb{R}^N)$, $e^{t\Delta}f$ is defined by duality. A mild solution of the problem (1.1)–(1.2) is a solution of the integral equation

$$u(t) = e^{t\Delta}\varphi + a \int_0^t e^{(t-s)\Delta} \left(|\cdot|^{-\gamma} |u(s)|^\alpha u(s) \right) ds, \tag{1.5}$$

and it is in this form that we consider problem (1.1)–(1.2).

We first consider local well-posedness for the integral equation (1.5). To our knowledge, there is only one previous result of this type, Wang [15], who works in the space $C_B(\mathbb{R}^N)$ of continuous bounded functions. For $N \geq 3$, a > 0 and $\gamma < 2$, he proves local existence of solutions to (1.5) in $C([0,T]; C_B(\mathbb{R}^N))$ for all $\varphi \in C_B(\mathbb{R}^N)$. See [15, Theorem 2.3, p. 563].

In this paper, we prove local well-posedness in $C_0(\mathbb{R}^N)$, the space of continuous functions vanishing at infinity, and in $L^q(\mathbb{R}^N)$ for certain values of q. We also require the condition $\gamma < 2$, and in fact $0 < \gamma < 2$. Throughout the paper we put, for $\alpha > 0$, $0 < \gamma < 2$,

$$q_c = \frac{N\alpha}{2 - \gamma}. (1.6)$$

The critical exponent q_c plays a crucial role in this theory. We will say that q is subcritical, critical or supercritical, according to whether $1 \le q < q_c$, $q = q_c$ or $q > q_c$. We have obtained the following results.

Theorem 1.1 (Local Well-Posedness). Let $N \geq 1$ be an integer, $\alpha > 0$ and γ such that

$$0 < \gamma < \min(2, N). \tag{1.7}$$

Let q_c be given by (1.6). Then we have the following.

- (i) Eq. (1.5) is locally well-posed in $C_0(\mathbb{R}^N)$. More precisely, given $\varphi \in C_0(\mathbb{R}^N)$, then there exist T > 0 and a unique solution $u \in C([0,T];C_0(\mathbb{R}^N))$ of (1.5). Moreover, u can be extended to a maximal interval $[0,T_{\max})$ such that either $T_{\max} = \infty$ or $T_{\max} < \infty$ and $\lim_{t \to T_{\max}} \|u(t)\|_{\infty} = \infty$.
- (ii) If q is such that

$$q>\frac{N(\alpha+1)}{N-\gamma}, \qquad q>q_c \quad and \quad q<\infty,$$

then Eq. (1.5) is locally well-posed in $L^q(\mathbb{R}^N)$. More precisely, given $\varphi \in L^q(\mathbb{R}^N)$, then there exist T > 0 and a unique solution $u \in C([0,T];L^q(\mathbb{R}^N))$ of (1.5). Moreover, u can be extended to a maximal interval $[0,T_{\max})$ such that either $T_{\max} = \infty$ or $T_{\max} < \infty$ and $\lim_{t \to T_{\max}} \|u(t)\|_q = \infty$.

Download English Version:

https://daneshyari.com/en/article/5024821

Download Persian Version:

https://daneshyari.com/article/5024821

Daneshyari.com