

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Sobolev–Lorentz spaces in the Euclidean setting and counterexamples

Şerban Costea

Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy

ARTICLE INFO

Article history: Received 30 May 2016 Accepted 1 January 2017 Communicated by Enzo Mitidieri

MSC: primary 31C45 46E35

Keywords:
Sobolev spaces
Lorentz spaces
Morrey embedding theorems

ABSTRACT

This paper studies the inclusions between different Sobolev–Lorentz spaces $W^{1,(p,q)}(\Omega)$ defined on open sets $\Omega \subset \mathbf{R}^n$, where $n \geq 1$ is an integer, $1 and <math>1 \leq q \leq \infty$. We prove that if $1 \leq q < r \leq \infty$, then $W^{1,(p,q)}(\Omega)$ is strictly included in $W^{1,(p,r)}(\Omega)$.

We show that although $H^{1,(p,\infty)}(\Omega) \subseteq W^{1,(p,\infty)}(\Omega)$ where $\Omega \subset \mathbf{R}^n$ is open and $n \geq 1$, there exists a partial converse. Namely, we show that if a function u in $W^{1,(p,\infty)}(\Omega)$, $n \geq 1$ is such that u and its distributional gradient ∇u have absolutely continuous (p,∞) -norm, then u belongs to $H^{1,(p,\infty)}(\Omega)$ as well.

We also extend the Morrey embedding theorem to the Sobolev–Lorentz spaces $H_0^{1,(p,q)}(\Omega)$ with $1 \leq n and <math>1 \leq q \leq \infty$. Namely, we prove that the Sobolev–Lorentz spaces $H_0^{1,(p,q)}(\Omega)$ embed into the space of Hölder continuous functions on $\overline{\Omega}$ with exponent $1-\frac{n}{p}$ whenever $\Omega \subset \mathbf{R}^n$ is open, $1 \leq n , and <math>1 \leq q \leq \infty$.

 \odot 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study the Sobolev-Lorentz spaces in the Euclidean setting and the inclusions between them. This paper is motivated by the results obtained in my 2006 Ph.D. thesis [6] and in my book [9]. There I studied the Sobolev-Lorentz spaces and the associated Sobolev-Lorentz capacities in the Euclidean setting for $n \geq 2$. The restriction on n there was due to the fact that I studied the n, q-capacity for n > 1.

The Sobolev–Lorentz spaces have also been studied by Cianchi–Pick in [4,5], by Kauhanen–Koskela–Malý in [22], and by Malý–Swanson–Ziemer in [25].

The classical Sobolev spaces were studied by Gilbarg-Trudinger in [15], Maz'ya in [26], Evans in [12], Heinonen-Kilpeläinen-Martio in [19], and by Ziemer in [30].

The Lorentz spaces were studied by Bennett-Sharpley in [1], Hunt in [21], and by Stein-Weiss in [29].

 $\hbox{\it E-mail addresses: $secostea@hotmail.com, $secostea@mail.dm.unipi.it.}$

The Newtonian Sobolev spaces in the metric setting were studied by Shanmugalingam in [27,28]. See also Heinonen [18]. Costea-Miranda studied the Newtonian Lorentz Sobolev spaces and the corresponding global p, q-capacities in [11].

There are several other definitions of Sobolev-type spaces in the metric setting when p=q; see Hajłasz [16,17], Heinonen-Koskela [20], Cheeger [3], and Franchi-Hajłasz-Koskela [14]. It has been shown that under reasonable hypotheses, the majority of these definitions yields the same space; see Franchi-Hajłasz-Koskela [14] and Shanmugalingam [27].

The Sobolev–Lorentz relative p, q-capacity was studied in the Euclidean setting by Costea (see [6,7,9]) and by Costea–Maz'ya [10]. The Sobolev p-capacity was studied by Maz'ya [26] and by Heinonen–Kilpeläinen–Martio [19] in \mathbb{R}^n and by J. Björn [2], Costea [8] and Kinnunen–Martio [23,24] in metric spaces.

The Sobolev–Lorentz spaces can be also studied in the Euclidean setting for n = 1. We do it in this paper. Many of the results on Sobolev–Lorentz spaces that we obtained in [6,9] in dimension $n \ge 2$ were extended here to the case n = 1.

In Section 3 we start by presenting some of the basic properties of the Lorentz spaces $L^{p,q}(\Omega; \mathbf{R}^m)$, where $\Omega \subset \mathbf{R}^n$ is open, $n, m \geq 1$ are integers, $1 and <math>1 \leq q \leq \infty$.

It is known that $L^{p,q}((0,\Omega_n r^n)) \subseteq L^{p,s}((0,\Omega_n r^n))$. We see this in Theorem 3.4 by constructing a function u in $L^{p,s}((0,\Omega_n r^n)) \setminus L^{p,q}((0,\Omega_n r^n))$. Here r > 0, $n \ge 1$, $1 and <math>1 \le q < s \le \infty$.

This function u is used in Theorem 3.5 to construct a radial function v that is smooth in the punctured ball $B^*(0,r)$ such that $|\nabla v|$ is in $L^{p,s}(B(0,r)) \setminus L^{p,q}(B(0,r))$. Later it will be shown in Theorem 4.13 that v is in $W^{1,(p,s)}(B(0,r)) \setminus W^{1,(p,q)}(B(0,r))$. This shows that the inclusion $W^{1,(p,q)}(B(0,r)) \subset W^{1,(p,s)}(B(0,r))$ is strict whenever r > 0, $n \ge 1$, $1 and <math>1 \le q < s \le \infty$.

In Section 4 we revisit many of the results from my Ph.D. thesis [6, Chapter V] and from my book [9, Chapter 3] and we extend them to the case n = 1. We improve some of the old results from [6, Chapter V] and from [9, Chapter 3].

We also obtain some new results in this section. Among them we mention the case $q = \infty$ for Theorems 4.11 and 4.12 (see the discussion below) as well as the strict inclusion $W^{1,(p,q)}(B(0,r)) \subsetneq W^{1,(p,s)}(B(0,r))$ that we discussed above. As before, r > 0, $n \ge 1$, $1 and <math>1 \le q < s \le \infty$ (see Theorem 4.13).

For $n \geq 2$, we proved in Costea [6,9] (by using partition of unity and convolution) that $H^{1,(p,q)}(\Omega) = W^{1,(p,q)}(\Omega)$ whenever $1 and <math>1 \leq q < \infty$. The partition of unity and convolution technique used there is similar to the techniques used by Ziemer in [30] and by Heinonen–Kilpeläinen–Martio in [19].

We proved in [6,9] (for $n \geq 2$) that $H^{1,(p,\infty)}(\Omega) \subsetneq W^{1,(p,\infty)}(\Omega)$. Once we constructed a function $u \in W^{1,(p,\infty)}(\Omega)$ such that its distributional gradient ∇u did not have an absolutely continuous (p,∞) -norm, we proved there that u was not in $H^{1,(p,\infty)}(\Omega)$.

In Section 4 of this paper, Proposition 4.7 and Theorem 4.8 show that $H^{1,(p,\infty)}(\Omega) \subsetneq W^{1,(p,\infty)}(\Omega)$ for $n \geq 1$. In this paper we also give a partial converse. Namely, we show in Theorem 4.11 that if a function u in $W^{1,(p,q)}(\Omega)$, $n \geq 1$, $1 \leq q \leq \infty$ is such that u and its distributional gradient ∇u have absolutely continuous (p,q)-norm, then u belongs to $H^{1,(p,q)}(\Omega)$ as well. This result is new for $q = \infty$ and $n \geq 1$ and improves a result from [6,9], proved there for $n \geq 2$ and $1 \leq q < \infty$. We proved this result via a partition of unity and convolution argument, because convolution and partition of unity work well on functions u that have absolutely continuous (p,q)-norm along with their distributional gradients ∇u .

In Theorem 4.12 we show that if a function u in $W^{1,(p,q)}(\mathbf{R}^n)$, $n \ge 1$ is such that u and its distributional gradient ∇u have absolutely continuous (p,q)-norm, $1 \le q \le \infty$, then u belongs to $H_0^{1,(p,q)}(\mathbf{R}^n)$ as well. This result is new when $q = \infty$ and $n \ge 1$ and improves a result from [6,9], proved there for $n \ge 2$ and $1 \le q < \infty$.

In Section 5 (among other things) we prove the Morrey embedding theorem for the Sobolev–Lorentz spaces $H_0^{1,(p,q)}(\Omega)$.

Download English Version:

https://daneshyari.com/en/article/5024822

Download Persian Version:

https://daneshyari.com/article/5024822

Daneshyari.com