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posed in the Sobolev spaces of radially symmetric functions HE ,(R3) x Hf;il (R3)
for all p > 3 and k > 3. Moreover, global C'° solutions are obtained when the initial
data are C§° and exponent p is an odd integer.

The radial symmetry allows a reduction to the one-dimensional case where an

ﬁ/ﬁri;ry 351,70 important observation of Haraux (2009) can be applied, i.e., dissipative nonlinear

secondary 35A05 wave equations contract initial data in W*4(R) x W*—1.4(R) for all k € [1,2] and
g € [1,00].
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1. Introduction

Dissipative nonlinear wave equations are well-posed in H*(R") x H*~1(R") for all k € [1,2]and n > 1
under the monotonicity condition of Lions and Strauss [14]. This global result makes no exception for
nonlinear dissipations of supercritical power, as determined by invariant scaling, and gets around the
stringent conditions for well-posedness of general nonlinear wave equations; see Ponce and Sideris [17],
Lindblad [13], Wang and Fang [26] and the references therein.

The monotonicity method has been less effective in studying higher regularity. It is still an open question
whether supercritical problems are globally well-posed in Sobolev spaces with index k& > 2. The purpose of
this paper is to give an affirmative answer when n = 3 and initial data have radial symmetry. To state the
result, let Ju = uy — Au be the d’Alembertian in R3T! and Du = (Vu, 9;u) be the space-time gradient of u.
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We use | - ||4, for the norm in L¢(R3) with ¢ € [1,00], and D®, for the partial derivative of integer order
o= (o, 02,03, 0).
We consider the dissipative nonlinear wave equation
Ou + ugP"ruy =0, 2 €R3 ¢ >0, (1.1)
with the Cauchy data
ult=0 = o, urli—o = w1, xR (1.2)

(R3) x H"~(R?), where the radially symmetric Sobolev

Our main assumptions are p > 3 and (ug,u;) € HF o

rad
spaces are defined as

HE (R?) = {uc H*(R?): (205, — 2502, )u(z) =0 for 1 <7< j <3}

Clearly, such u(x) depend only on |z| = (27 + 23 +3)"/2. The radially symmetric spaces are invariant under
the evolution determined by (1.1), (1.2); see [22,20].

Theorem 1.1. Assume that p > 3 and (ug,u1) € H2 4 (R3) x H2 ,(R3®). Then problem (1.1), (1.2) admits a
unique global solution u, such that

D € C([0,00), H:*(R?)), o] < 3.

Corollary 1.2. The global solution of problem (1.1), (1.2), given by Theorem 1.1, satisfies the following
uniform estimates: for t > 0,

t
3 / 1D%u(s)|12.ds < Cy(up, ur),
1<[al<2

> DD u(t)|l2 < Calug,ur),

o <2
where Cj(ug,u1), j = 1,2, are finite whenever |ug||gs + ||u1|| g2 is finite.

It is easy to derive the propagation of higher regularity from Theorem 1.1 and Sobolev embedding
inequalities, if the nonlinearity allows further differentiation.

Theorem 1.3. Let p be an odd integer and (ug,u1) € HE (R?) x HY1(R3) with an integer k > 4.
Problem (1.1), (1.2) admits a unique global solution w, such that

D*u € C([0,00), H* 1*I(R?)), |a| < k.

rad

In addition, the following estimates hold uniformly in t > 0:
t
> / ID%u(s)|3ds < CF (uo, wa),
1<]a|<k—1"0

3" DD u(b)]lz < C8 (ug, uy),
la|<k—1

where C](-k)(uo,ul), Jj=1,2, are finite whenever ||uol| g + ||u1| gr—1 s finite.

If (ug,u1) € CZ(R3) x C2(R3) and (ug,u1) are compactly supported, then problem (1.1), (1.2) admits

rad
a unique global solution

(IS Coo([ovoo)v f;d(Rg))v

such that u(-,t) is also compactly supported for all t > 0.
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