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a  b  s  t  r  a  c  t

We present  a real-time  solution  to  the  phase  diversity  problem  when  the observed  objects
are extended  scenes.  It utilizes  an iterative  linearization  of  the  optical  transfer  functions
(OTF)  in  at  least  two  diversity  planes  by a first-order  Taylor  expansion  to  reconstruct  initial
wavefront.  Vast  simulation  experiments  are  processed  to verify  the presented  algorithm,
including  comparing  our algorithm  with  the  analytic  estimator  method,  demonstrating  that
our method  has  high  wavefront  detection  accuracy  and  large  linearity  range.

© 2017  Elsevier  GmbH.  All  rights  reserved.

Introduction

Since the inception of phase diversity (PD) about two decades ago, many authors have used the PD method [1–5], which
utilizes at least two images of the same object recorded in presence of a known optical aberration (e.g. defocus), to estimate
the wavefront of optical systems and enhance the detected image. The hardware of PD technique is limited to or can be
merged in the usual imaging sensor, the number of estimated modes can be continuously tuned and it is among the very few
methods enabling the measurement of differential pistons, tip-tilts on segmented or divided apertures. However, the main
drawback of classic PD is that since it is a nonlinear optimization problem, complexity is reported on data processing. Due
to the high computational complexity and possible convergence to local optima [6], the nonlinear PD has a limited usage in
real-time correction algorithms.

Considerable effort has been directed toward decreasing the computational complexity of the PD algorithm. The common
idea is to linearize the generalized pupil function (GPF) or point spread function (PSF) based on the assumption that the
total aberration is small, such as paper [7–9] utilize an expansion of the GPF to retrieve the unknown phase and paper
[10,11] linearize PSF to reconstruct the wavefront. But all of them need a single point source, and thus cannot be operated on
observation systems which take images of very extended scenes. Paper [12] presented an approximation of optical transfer
function (OTF) which can be used for the detection of wavefront aberrations on extended object, but is limited to extremely
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small phase aberrations. In this letter, we present a real-time wavefront reconstruction for extended object by the use of the
iterative linearization of OTFs in at least two diversity planes and compare with the analytic estimator method proposed in
paper [12]. The experimental results demonstrate that our method effectively increases the linearity range, making it much
larger than that in paper [12].

We first present the model for image formation through the optical system in the presence of aberrations. The phase
aberrations �k ∈ R

m2×1 in the k-th diversity image can be approximated using a normalized Zernike basis [13]:

�k(uj, vj) = Z(uj, vj)(  ̨ + ˇk), (1)

where m2 is the number of pixels,  ̨ ∈ R
n×1 is the n Zernike coefficients to be reconstructed, ˇk ∈ R

n×1 is the introduced
known diversity to eliminate the ambiguity of the inverse problem, Z(uj, vj) ∈ R

m2×n is the matrix of the n Zernike polyno-
mials evaluated in the pupil plane (uj, vj) coordinates. These phase aberrations nonlinearly influence the PSF expressed in
the spatial coordinates (sj, tj), which can be written as:

h(sj, tj; ˛, ˇk) = |I
[
P(uj, vj) exp(i�k(uj, vj))

]
|2(sj, tj), (2)

where I is the Fourier transform and P is the binary pupil function.
The image recorded at the k-th optical plane of an instrument is modeled by the discrete and noisy convolution of the

PSF with the observed object, shown as:

yk,j(sj, tj) = o ∗ h(sj, tj; ˛, ˇk) + nk(sj, tj), (3)

where yk,j denotes the j-th pixel of the k-th diversity image, o is the true observed object and nk(sj, tj)is additive noise. Eq.
(3) can be rewritten in frequency domain as below:

Yk,j(fsj , ftj ) = O • S(fsj , ftj ; �, ˇk) + Nk(fsj , ftj ), (4)

where Yk,j, O, S and Nk are discrete Fourier transforms of yk,j, o, h and nk, respectively, (fsj, ft j) is the coordinate vector in the
frequency domain and • denotes the dot product. We  introduce the short-hand notations of S(fsj, ft j; ˛, ˇk)as Sj(�, ˇk), recall
that Sj(�, ˇk) is the OTF of the k-th image plane.

We approximate the OTF by a first order Taylor expansion for small aberrations and non-zero diversities. The first-order
Taylor approximation of the OTF in � = 0 is given by:

Sj(˛, ˇk) = D0,j(ˇk) + D1,j(ˇk)  ̨ + O‖˛‖2, (5)

whereD0,j(ˇk) = Sj(˛, ˇk)|˛=0, D1,j(ˇk) = ∂Sj(˛,ˇk)

∂˛
|
˛=0

and O‖˛‖2is the 2-th order Lagrange residue.
In order to eliminate the unknown object to establish a direct relationship between the detected images and the unknown

aberrations, two images Y1 and Y2 are used here based on PD technique. Multiplying them by each other’s OTF, thus we  get
Eqs. (6) and (7):

S2 • Y1 = S2 • O•S1 + S2 • N1, (6)

S1 • Y2 = S1 • O • S2 + S1 • N2. (7)

Since these two equations only involving dot product, we can eliminate the unknown object by subtracting these two
image measurements, shown as below:

S2 • Y1 − S1 • Y2 = S2 • N1 − S1 • N2. (8)

Substituting Eq. (5) into this expression and abandoning 2-th order residue yields a new estimate of phase via the solution
of a least-square (LS) problem:

Y = A  ̨ + �N,  (9)

where
Y = D0,j(ˇ1) • Y2 − D0,j(ˇ2) • Y1, A = D1,j(ˇ2) • Y1 − D1,j(ˇ1) • Y2, �N = S1 • N2 − S2 • N1
Thus, the linear estimate of the phase aberrations can be obtained by the LS estimator:

 ̨ =
[
�(ATA)

]† [�(ATY)
]
, (10)

where •T denotes the transposition, � represents the real part operator and •† is the generalized inverse of a matrix.
We consider only the static setting, where the aberrations do not change in the time window considered. We  start with

an initial estimate of � using the OTF approximation around zero aberration, then a new linearization of the OTF can be done
around the current phase estimate ˆ̨  and a new least squares (LS) problem can be established to solve the next estimate. We
repeat the process until reach the number of iteration times or the norm of the aberration increment reach the set threshold,
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