Original research article

Research on position error of sparse optical system

Chenchen Wang ${ }^{\mathrm{a}, \mathrm{b}, *}$, Yang Shen ${ }^{\mathrm{a}, \mathrm{b}}$, Gangyi Zou ${ }^{\mathrm{a}, \mathrm{b}}$, Ruichang Li ${ }^{\mathrm{a}, \mathrm{b}}$, Xuewu Fan ${ }^{\text {a }}$
${ }^{\text {a }}$ Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
${ }^{\text {b }}$ University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O

Article history:

Received 28 March 2017
Accepted 20 June 2017

OCIS codes:

(080.2740) Geometric optical design
(110. 2960) Image analysis
(060.4080) modulation

Keywords:

Geometric optical design
Image analysis
Modulation

Abstract

The main method to improve the resolution of optical system is to increase the aperture of the optical system, and it is a common method to use the sparse-aperture mirrors to obtain a large aperture primary mirror. The primary mirror of optical system is deployed when it is launched into the orbit, and the deviation between deployed position and design position determines the quality of the optical system. So it is necessary to analyze the position accuracy of segmented mirrors. Sparse-aperture optical system is modeled by optical software Zemax, and by adjusting six degrees of freedom of segmented mirrors can get curves between position error and image quality. The results show that different positions of segmented mirrors can produce different wave-front when they have same position error. Moving along the Z axis, the inner mirrors influence most while the outer ones influence smallest; tilt along the X axis, middle ones have maximum wave-front aberration while the outer ones produce minimum wave-front aberration. When tilt along Y axis, middle segmented mirrors have the smallest wave-front aberration and outer ones have maximum. Two methods are used to distribute the wave-front aberration onto each segmented mirror. One is that according to the relationship curves, distribute the position error to each segmented mirror alone. Another is that each one has same position errors. The final result shows that the former method has a more relax position error when generates the same wave-front aberration.

© 2017 Elsevier GmbH . All rights reserved.

1. Introduction

Spatial resolution is an important index to evaluate the observation capability of an optical system. The higher spatial resolution is, the stronger ability to distinguish the target details is, and the more information is obtained. According to the Rayleigh criterion [1], the system resolution can be improved by enlarging the aperture, but that will increase the size of primary mirror, too. Large aperture primary mirror's material preparation, processing and adjustment are all difficult. Sparseaperture optical system solves above problems [2,3]. By using segmented mirrors to montage a large aperture of primary mirror, and the segmented mirrors are folded before launch to reduce the volume. Boeing designed an optical system of six 2.2 m segmented mirrors in the Low Cost Space Imager program, and the structure of the system uses a Golay-6 structure, which can achieve 0.29 m resolution at the orbital of 6100 km height. However, when segmented mirrors are unfolded in the orbit, the deployed position cannot be completely consistent with the design position, resulting in displacement, tilt and other errors affect the image quality of system [4,5]. In order to ensure the imaging quality, the position error of segmented mirrors is necessary to be analyzed in a real optical model instead of a theoretical model. Because theoretical

[^0]Table 1
Design parameters of optical system.

Orbit	Resolution	Focal length	Pixel size	Field of view	Wavelength
36000 km	3 m	250000 mm	$10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$	$0.02^{\circ} \times 0.02^{\circ}$	$500-800 \mathrm{~nm}$

Fig. 1. Schematic diagram of three mirror initial structure.

Table 2
Optical system parameters after optimization.

	Semi-diameter R / mm	Distance D / mm	Conic k
Primary Mirror	-32738.7472	-14532.2878	-0.9951
Second Mirror	-4275.8866	16673.1624	-1.6960
Third Mirror	-4938.9785	-3776.8763	-0.7256
Fold Mirror	infinite	-4000	-
Image	infinite	0	-

model is an ideal model, it could not consider the system's aberration [6,7]. By using software to design a real optical system, distribute a large aperture primary mirror into 9 circle mirrors. Adjust each segmented mirror's position errors, and we can get relationship curves between position errors of segmented mirrors and the wave-front aberration or Strehl ratio. Analyzing the relationship curves can obtain optical system's imaging quality's sensitivity to the segmented mirrors' position error, including displacement error, tilt error and piston. According to the relationship, the total RMS can be distributed into different values to different layers. For example, tolerance on movement along X axis is tighter to middle segmented mirrors than the outer and inner ones, which makes some tolerance on segmented mirrors more loose relative to give each one uniform tolerance.

2. Optical system design and imaging quality analysis

To analyze the influence of sparse-aperture optical system, design a three mirror system. Requirements are listed as follows (Table 1):

2.1. Initial structure of optical system

There are two kinds of structures to design a reflective system: refractive-reflective and reflective types [8]. The disadvantages of refractive-reflective type are large volume and limited aperture. Reflective type has no chromatic aberration, which can be imaged in a wide band; less number of mirrors [9]. According to the design requirements as follows: long focal length, large aperture, small field of view, so reflective optical system is chosen. Fig. 1 shows the initial structure of three mirror system. M_{1}, M_{2}, M_{3} forms the whole system, in which R_{1}, R_{2} and R_{3} are the radius of the M_{1}, M_{2}, M_{3}, respectively; d_{1} is the distance from M_{1} to M_{2}, and d_{2} is the distance from M_{2} to $M_{3} ; k_{1}, k_{2}$ and k_{3} are conics of three mirrors [10].
h_{1}, h_{2}, h_{3} are the apertures of the M_{1}, M_{2}, M_{3}, respectively; fiis the focal length of the $M_{1} ; l_{2}$ is distance from the center point of M_{2} to focus of $M_{1} ; l_{2}^{\prime}$ is distance from center point of M_{2} to focus of M_{1} and $M_{2} ; l_{3}$ is distance from the center point of the M_{3} to the focus of M_{1} and M_{2}; l_{3} is distance from center point to focus of optical system. According to the formulas of initial optical system parameters and system requirements, we can solve all the parameters of the initial structure.

According to the actual needs, select the appropriate parameters to optimize the design. Stop is put on primary mirror, and a flat mirror is put in the front of the third mirror to make the optical system compact. Finally, structural parameters can be obtained after optimization (Table 2,).

https://daneshyari.com/en/article/5024956

Download Persian Version:

https://daneshyari.com/article/5024956

Daneshyari.com

[^0]: * Corresponding author at: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

 E-mail address: wangchenchen@opt.ac.cn (C. Wang).

