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a  b  s  t  r  a  c  t

We examine  conservation  laws  of  the  energy  and  chirality  for electromagnetic  waves  in the
case of  loss-free  dielectric  media.  We  show  that the  energy  allows  for conservation  laws
for both  generic  unsteady  and  time-harmonic  fields.  In comparison,  the  chirality  admits  a
conservation  law  only  for time-  harmonic  fields.  This  difference  in the  time  dependence
illustrates  the crucial  distinction  between  the  energy  consisting  of  scalar  products  of  field
variables  and  the  chirality  composed  of  their  vector  products.  For  future  extension  of  our
analysis, we  derive  those  conservation  laws  for  spatially  inhomogeneous  refractive  index.
As a  result,  we  uncover  physical  implications  of the new  terms  in  the  conservation  laws,
that  have  not  been  considered  in the  conventional  literature.

©  2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Electromagnetic (EM) waves are characterized by a variety of properties, that are bilinear in the field variables. As one
of such properties, the energy density is the most important charactreistics of EM waves. Notwithstanding, the EM energy
density as squared manitudes of the field vectors cannot properly reveal the phase relations between the electric and
magnetic fields. Complementary to the EM energy, the EM chirality accounts for the phase difference between the electric
and magnetic fields [1–10].

While the orbital and spin parts of angular momentum constituting the energy-current (Poynting) vector are relevant to
numerous application areas including manipulation of nano-objects [3,11,12], the EM chirality is related to the application
areas including, for instance, the enantiomer separation [2,9]. Notice that chirality is sometimes referred to as helicity [8]. It
is well known that both energy and chirality satisfy respective conservation laws. In fact, energy and chirality are associated
with each other through such conservation laws.

When it comes to the temporal features of EM waves, it is however not quite certain whether both energy and chirality
satisfy such conservation laws for generic unsteady (viz., non-periodic) fields, which include, for instance, optical pulses [3].
Only for time-harmonic fields, several common features hold true to the conservation laws of energy and chirality. For this
matter, we will examine this issue in this study by trying to establish conservation laws for both unsteady and time-harmonic
fields.

Both energy and chirality of EM waves have been investigated largely for vacuum or homogeneous dielectric media.
Therefore, we try in this study to establish conservation laws for inhomogeneous media [13–21]. Recent advances in gradi-
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ent metamaterials and in a broader sense in bulk gradient metamaterials spur us to investigate inhomogeneous media [20].
For instance, we find that plasmonic-enhanced inhomogenoeus laser fields are useful for studying atomic physics, where
the spatial inhomogeneity of the field is sufficiently fine enough on the nanometer scale to get into interactions with the
atomic processes [21]. With modern nano-fabrication technologies at hand, metamaterials with a variety of artificial spatial
inhomogeneities are increasingly available [18]. Our study serevs as a starting point for dealing with such spatial inhomo-
geneities from the standpoint of two important conservation laws of EM waves. However, how to practically achieve the
spatial variations in the refractive indices are out of scope of this study.

As an additional example, where unsteady fields do not work properly but time-harmonic fields work fine, we  derive
conservation laws of both energy and chirality for gyrotropic media [22–25]. Based on our recent studies on EM waves
[26–28], we hope to expand further on their angular momentm and spin in the near future particularly for inhomogeneus
media. To this goal, we will provide full details of all the pertinent derivations to make our study self-contained and serve
as a reference for future endeavors.

2. Basic formulation

In SI units, the Maxwell’s equations are given as follows [9].⎧⎪⎨
⎪⎩

∇̃ × �B = n2ε̃0
∂ �A
∂t̃

∇̃ × �A  = − �̃0
∂ �B
∂t̃

,

{
∇̃ ·

(
n2ε̃0 �A

)
= 0

∇̃ · �B = 0
. (2.1)

Here, the first and second equations are the Ampère’s circuital law and the Faraday’s law of induction in the absence of
electric space charge. In addition, the third and fourth equations are the electric Gauss’s law for electric displacement and
the magnetic Gauss’s law in the absence of magnetic monopoles [4].

Concerning notations, �A and �B are dimensional and the electric and magnetic fields, respectively. Both are real and space
vectors, namely, �A, �B ∈ R

3 with R  denoting real space. Furthermore, t̃  is the dimensional time, whereas ∇̃× and ∇̃· are
the usual dimensional differential operators for curl and divergence, respectively. Both space derivatives are based on the
dimensional coordinates (x̃, ỹ, z̃) in  the Cartesian coordinate system.

As the principal material properties of EM waves, the dimensional parameters ε̃0 and �̃0 with ε̃0, �̃0 ∈ R  are electric
permittivity and magnetic permeability, respectively. Non-magnetic media are assumed throughout this study. We  assume
the media to be dielectric and loss-free [22]. Therefore, the refractive index n is real and dimensionless so that n ∈ R. It is
greater than unity, namely, n ≥ 1. Its square n2 is hence the relative electric permittivity ε such that ε ≡ n2 [4,5,19]. In general,
we assume n to be spatially inhomogeneous, namely, n = n (x̃, ỹ, z̃).

Let  us introduce another pair of real dimensional field vectors �X  and �H with �X, �H ∈ R
3 such that they normalize �A  and �B

as follows.√
ε̃0 �A  ≡ �X,

√
�̃0 �B ≡ nref

�H.  (2.2)

Here, nref is a prescribed refractive index so that it is dimensionless and nref > 0. In this aspect, notice that nref is not nec-
essarily identical to n0 = 1 for vacuum. For simplicity of notation, we define the squared and normalized refractive index

N  ≡
(

n/nref

)2
, whereby 0 ≤ N  < ∞ in principle.

Let us now introduce additional reference parameters by considering a monochromatic wave with a certain fixed fre-
quency ω̃0 with ω̃0 > 0 [9]. A natural choice of reference time is t̃ref ≡ ω̃−1

0 so that a dimensionless time is defined by t ≡ ω̃0 t̃.
Notice here that we are still dealing with generic unsteady field variables. Turning now to the space coordinates, we notice
that the speed of light is defined by c̃0 in vacuum. Further define the reference length by l̃ref and the reference wave number
by k̃ref ≡ l̃−1

ref
. In summary for the reference parameters,

c̃0 ≡ 1√
ε̃0�̃0

, t̃ref ≡ 1
ω̃0

, t ≡ ω̃0 t̃, l̃ref ≡ c̃0

nref ω̃0
. (2.3)

With all these dimensionless variables and parameters, the Maxwell’s equations in Eq. (2.1) are reduced to the following
normalized dimensionless set.⎧⎪⎨

⎪⎩
∇ × �H =  N∂ �X

∂t

∇ × �X = −∂ �H
∂t

,

{∇ ·
(
N�X

)
= 0

∇ · �H = 0
. (2.4)

Notice that the dimensionless coordinates are now defined by (x, y, z) ≡ k̃ref (x̃, ỹ, z̃) via  Eq. (2.3). Accordingly, the dimen-
sionless operators �× and �· are constructed via these dimensionless coordinates. In this study, we are however interested
in discovering what happens to non-vacuum dielectric inhomogeneous media with non-constant N (x, y, z). Let us stress
that both �X and �H are physical field vectors.
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