Accepted Manuscript

Title: High energy mode-locked Yb-doped fiber laser with Bi₂Te₃ deposited on tapered-fiber

Authors: Lu Li, Yonggang Wang, Xi Wang, Tao Lin, Hang Sun

PII: S0030-4026(17)30698-8

DOI: http://dx.doi.org/doi:10.1016/j.ijleo.2017.06.029


Reference: IJLEO 59292

To appear in:

Received date: 21-3-2017 Revised date: 6-6-2017 Accepted date: 7-6-2017

Please cite this article as: Lu Li, Yonggang Wang, Xi Wang, Tao Lin, Hang Sun, High energy mode-locked Yb-doped fiber laser with Bi2Te3 deposited on tapered-fiber, Optik - International Journal for Light and Electron Opticshttp://dx.doi.org/10.1016/j.ijleo.2017.06.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

High energy mode-locked Yb-doped fiber laser with Bi₂Te₃ deposited on tapered-fiber

Lu Li^{1,*}, Yonggang Wang^{2,3}, Xi Wang³, Tao Lin⁴, Hang Sun⁴

¹School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China

²School of Physics and information Technology, Shaanxi Normal University, Xi'an, 710119, China

³State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China

⁴Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China

*Corresponding author: liluyoudian@163.com

Abstract

The report presents the high energy mode-locking operation in an all-normal-dispersion Yb-doped mode-locked fiber laser based on evanescent field interaction with tapered fiber deposited with Bi₂Te₃ topological insulator. Different from most of solution processing methods, Bi₂Te₃ film is deposited on the tapered fiber by pulsed laser deposition (PLD) technology. In this way, it can bring less non-saturable losses and contact to the fiber better. By incorporating this novel fiber-taper Bi₂Te₃ saturable absorber into Yb-doped fiber laser cavity, a repetition rate of 6.2 MHz mode-locked fiber laser is achieved. The maximum single pulse energy of 2 nJ is obtained. The results indicate that fiber-taper Bi₂Te₃ saturable absorber possesses potentiality for high power mode-locked fiber laser applications.

Key Words: fiber laser; mode-locking; saturable absorber

1. Introduction

High energy pulse with nanosecond duration is suitable for laser processing, optical time domain reflectometer (OTDR), second-harmonic generation, and microstructure evolution [1]. Elongating all-normal-dispersion fiber laser cavity has been widely investigated as a means of obtaining high pulse energy [2]. Passively mode-locking techniques based on nonlinear polarization evolution (NPE) and nonlinear optical loop mirror (NOLM) have been used to obtain low cost and compact ultrafast lasers [3, 4]. Saturable absorber (SA) whose light absorbance decreasing with the increasing of light intensity is also considered to be an effective method to achieve the mode-locking operation in fiber lasers [5-10]. Semiconductor saturable absorber mirrors (SESAMs) have been paid much attention in ultrafast laser area, while the commercial applications of SESAMs are limited by complicated fabrication, narrow band wavelength and expensive price [11]. Carbon nanotube, zero-gap material graphene, topological insulators (TIs), transition metal dichalcogenides (TMDs) and black phosphorus (BP) have achieved great success in SA applications for the advantages of wavelength-independent saturable absorbing characteristics, low saturable absorbing threshold, and large

Download English Version:

https://daneshyari.com/en/article/5025193

Download Persian Version:

https://daneshyari.com/article/5025193

Daneshyari.com